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AFIT/GSE/ENV/09-02DL 

Abstract 

 Senior leadership of the Air Force's Space and Missile Center suggested an 

investigation of systems integration within the space acquisition community in the fall of 

2008.  This thesis performs that investigation.  A review concluded that while Systems 

Integration (SI) is extensively discussed as an area deserving considerable attention in the 

Systems Engineering literature, definitions are weak and methods and tools non-existent.  

Known SI activities are not being traced and assessed for adequacy throughout system 

development.  Employing the Space System Acquisition Lifecycle Framework as the 

environment for this research, a method of characterizing and tracing SI throughout a 

program‘s lifecycle by using technical reviews and audits (TR&A) is proposed.  

Subsequent to a SI trace of an acquisition program, an assessment can be performed to 

determine the adequacy of the integration of Systems Engineering (SE) tasks.  Using this 

assessment, prudent adjustments to program resources (e.g., SE, finance, research and 

development, program management, etc.) can be considered that will mitigate or resolve 

program deficiencies caused by insufficient SI.  The proposed method is demonstrated 

across technical reviews and audits of the Global Positioning Systems (GPS) program. 

The results of this thesis should accentuate the value of SI during space system 

acquisition – a key consideration which is rarely recognized. 
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ANALYZING SYSTEMS INTEGRATION BEST PRACTICES 

IN DOD SPACE SYSTEM ACQUISITION 

 

I. Introduction 

Background 

Since the Industrial Revolution (circa 1760 - 1850), the size and complexity of 

systems has grown at an exponentially increasing rate.  At the beginning of this era, a 

single person could comprehend and master the complexities of a system (e.g., the steam 

engine, the cotton gin, etc.).  In today‘s world, however, it is exceedingly rare to find a 

person that could devote enough time and energy to comprehend and master a single, 

moderately complex, system.  It now takes the time, energy and expertise of a small army 

of highly educated, trained and experienced professionals to successfully design or 

develop a modern system. 

Over the past several decades, the engineering community has developed and 

fostered the field of Systems Engineering (SE).  During this time, the SE discipline has 

evolved to address the entire technical effort required to develop and validate an 

integrated and total life cycle balanced system of people, processes, and products that 

satisfy modern, technologically advanced, systems.  However, the individual engineering 

disciplines required to adequately support a Department of Defense (DoD) Space System 

Acquisition have rarely been appropriately integrated; resulting in continuing technical 

and programmatic shortfalls. 

Numerous challenges continue to afflict DoD Space System Acquisition 

programs.  These challenges are commonly attributed to the increasing technology 
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capabilities available to choose from, user requirements to satisfy, suppliers to select, 

enterprise processes to integrate, and specific system security required for DoD Space 

System Acquisition programs.  Any combination of these variable complexities can cause 

inadequate risk management, poor estimation planning, deficient SE continuity, lack of 

teamwork, poor communications and coordination, and insufficient monitoring of 

Systems Engineering & Integration (SE&I) progress.  Resolving these program and 

technical maladies first requires an accurate assessment of the SI being conducted in a 

program (i.e., DoD Space System Acquisition program).  Tracing Systems Integration 

(SI) in a DoD Space System Acquisition program, the subject of this thesis is the first 

step in curing these maladies. 

Scanning through Government Accountability Office (GAO) testimonies and 

reports for Space System Acquisition programs also revealed a variety of problem areas 

related to SI.  Additionally, there are SI proceedings from the repertoire of the 

International Council on Systems Engineering (INCOSE) that provide evidence that SI is 

a serious topic of discussion.  SI remains a topic of interest within the SE community 

despite the lack of standards that enable the uniform selection of mechanisms to cope 

with these SI challenges. 

Needless to say, these SI drivers set-up a landscape for  ―integrating the work of 

many people in different functional disciplines, working on different product system 

components, in many different process steps over time‖ (21:42).  This landscape defines 

the three fundamental SI elements as people, process, and product.  When working 

together, these SI elements decompose into integration areas where interrelations, 
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interactions, and interfaces among and between these elements can be measured.  Figure 

1 illustrates these relationships using a conceptual model for integrating SI elements that 

yield a total of seven locations of integration activity – the patterned areas illustrated in 

this figure where SI occurs. 

 

Figure 1.  Basic Systems Integration Model 

Purpose & Scope 

The focus of this thesis is the development of a methodology in which program SI 

can be gauged from standard DoD Systems Acquisition Technical Reviews and Audits 

(TR&A) conducted for a DoD Space System Acquisition program.  Case studies 

performed on these types of programs will be used to develop a methodology; which can 

be used to trace the application of SI within a program.  Practitioners of this method will 

be able to assess the presence and the timing of SI being performed in a given program. 

Research Objectives/Investigative Questions 

To better understand the role and impact of SI in the DoD Space System 

A

People

F D 

G 
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Acquisition Lifecycle Framework, this research pays particular attention to lessons 

learned that reveal characteristics related to integrating (i.e. interrelating, interacting, or 

interfacing) the system elements of people, processes, and/or products; all or any 

combination of which may have to work together.  Capturing the program attributes that 

will be used to assess SI activity occurring in a Space System Acquisition program will 

be accomplished using the traditional series of TR&A which are conducted at logical 

transition points throughout the lifecycle framework of real-world programs; using case 

studies to obtain program artifacts.  The following investigative questions provide a 

means to achieving the main objective: 

(1) What are the characteristics of SI as revealed by lessons learned from various 

space-system programs? 

(2) How are SI characteristics (attributes) traceable in the standard TR&A used in the 

Defense Acquisition System (37:34-42)? 

Overview of Methodology 

In pursuit of answering the investigative questions, research is conducted in two 

parts: the identification and categorization of SI characteristics, and the application of 

these SI characteristics to a DoD Space System Acquisition program in a manner that will 

support program SI traceability.  Details of these methodology parts are described in 

Chapter III of this thesis. 

In the first research area, a content analysis (10:1) is performed on 100 space-

system related root-cause problem reports collected over the years of 1985-2005 (13:1-

100).  In each report, there is an average of four lesson-learned statements.  For each 
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lesson-learned statement, the presence of key concepts that have a predictable correlation 

to the SI model elements of people, processes and products are determined.  Then, the 

linking relationships (i.e. interrelating, interacting, or interfacing) of these concepts are 

categorized into the seven integration areas of people-people (A), process-process (B), 

product-product (C), people-process (D), process-product (E), product-people (F), and/or 

people-process-product (G).  This part of the thesis research was a necessary first step to 

better understand the elemental characteristics of SI, and to establish criteria that can be 

used to identify and trace the application of SI throughout a DoD Space System 

Acquisition program‘s life cycle. 

During the second part of this research, a traceability analysis is performed on a 

set of TR&A that established linking relationships between/among the seven integration 

areas.  Data collected during this part of the research focused on the SI concept-elements 

output from the previous part of the research; known as ―high frequency tallied‖ SI 

concept-elements derived from the content analysis of the space systems lessons learned 

performed in the first part of this research.  A traceability matrix model identifying the 

lifecycle phase(s) inferred by the high frequency tallied SI concept-elements was 

constructed next.  This traceability matrix provides a means to document the tracing of 

the proposed SI model elements and their SI areas.  In Chapter IV the traceability matrix 

model is then deployed using real-world space-system programs (i.e., case studies) that 

have completed, or are going through the TR&A process.  Results of the TR&A matrix 

will then be used to validate the efficacy of using program TR&A for tracing SI 

characteristics. 
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Assumptions/Limitations 

The identification of SI characteristics is subject to the authors‘ interpretation of 

the lesson-learned statements.  This interpretive process assumes key concepts are 

accurately correlated to the SI areas used for the model element determination.  Although 

lesson-learned statements may have been written by the space system analyst with 

subconscious biases and predispositions, there is no way to discern if biases have 

influenced the lesson-learned descriptions.  Therefore, the assumption is that the authors 

of this thesis have accurately correlated key concepts with SI model elements.  The 

primary limitation that this thesis encountered is the access to and availability of program 

or system information.  Much of this information was considered by the Program Office 

to be sensitive or proprietary and not authorized for external review.  As a secondary 

limitation, the tailoring of the technical review objectives, review criteria and/or 

supporting documentation degraded the SI analytical usefulness of these artifacts. 

Preview of Thesis Composition 

It has become a recognized fact within the Air Force acquisition community that 

the practice of life cycle Systems Engineering suffers from numerous shortcomings. 

“Increasingly, I’m convinced that the systemic problem is in the field of 

systems engineering.” (41:1) 

“An immediate transformation imperative for all programs is to focus 

more attention on the application of Systems Engineering principles and 

practices throughout the system life cycle.” (44:1) 

Over time, within the DoD Space Systems acquisition community, the individual 

SE disciplines have matured and are highly reliable and effective.  The holistic and 
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seamless integration of these SE disciplines, however, have proven to be a substantially 

more challenging endeavor. 

“The SBIRS case provides impetus to assess the level and quality of the 

integration of systems engineering and software systems engineering in 

ongoing programs."  (15:33) 

The ability of a Program Manager or Chief Engineer to trace SI through the life-

cycle phases of a DoD Space Systems Acquisition will provide valuable insight into the 

integration of the multitude of SE activities occurring throughout a space-system 

acquisition life cycle. 

This thesis is primarily intended for use by the Space System Acquisition 

community to improve processes related to acquiring effective, affordable and timely 

space-systems.  Its main audience is expected to be systems engineers and program 

managers who wish to expand their knowledge so as to deal with SE integration 

challenges.  The chapters are organized as: 

 Chapter I sets the stage and provides an overview of what is covered in the thesis. 

 Chapter II describes the essential relevant literature pertaining to SI within the context 

of this thesis‘ landscape.  This chapter includes the basic concepts and principles of 

key areas of knowledge (e.g. systems engineering, systems architecture, systems 

management, systems acquisition, etc.) related to SI elements working together in 

acquiring space-based systems. 

 Chapter III provides an organized data collection and reduction from executing 

detailed steps of this thesis‘ two-part methodology with the intention of achieving the 

research‘s objective and answering the investigation questions. 
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 Chapter IV employs the traceability matrix with real-world space-system programs 

assessing SI attributes and demonstrating that SI can be traced and therefore be 

quantified. 

 Chapter V summarizes the results and findings from the data analyses performed in 

Chapter III and from the case studies performed in Chapter IV.  The chapter 

concludes with this thesis‘ contributions to this topic‘s body of knowledge to include 

recommendations for future researches.  
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II. Literature Review 

The purpose of this chapter is to provide brief background information on topics 

areas used in the methodology and data analysis chapters.  The intent is to frame the 

reader‘s mind in support of minimizing details on how the methodologies are conducted.  

Also, in situations where there are two or more literature references, this chapter explains 

which parts are being used by this thesis. 

Defining Systems Integration 

In search of a standard definition for SI within the DoD System Acquisition 

Lifecycle Framework, the authors initially found ―System Integration‖ described as the 

first major effort of the System Development & Demonstration (SDD) Phase: 

―Systems Integration is intended to integrate subsystems, complete 

detailed design, and reduce system-level risk.  The program shall enter 

System Integration when the PM has a technical solution for the system, 

but has not yet integrated the subsystems into a complete system.‖  (38:11) 

However, the updated DoD instruction has renamed this same effort as ―Integrated 

System Design‖ of the Engineering & Manufacturing Development (EMD) Phase: 

―Integrated System Design is intended to define system and system-of-

systems functionality and interfaces, complete hardware and software 

detailed design, and reduce system-level risk.  Integrated System Design 

shall include the establishment of the product baseline for all configuration 

items.‖  (37:21). 

Oddly enough, the difference between these two definitions is focused on the definition 

of a ―system.‖  In order words, the obvious definition of SI as ―working together‖ is not 

only dependent on the characteristics and attributes of a system but also the system‘s 

levels of abstraction. 
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This system-dependency was also discovered in searching for academic textbooks 

entitled with SI.  Most of the textbooks were found within the realms of Systems 

Engineering, Systems Management, Systems Architecture and Enterprise Integration; 

except one surfaced with the title ‗System Integration‘ (i.e., no ―s‖ at the end of the word 

system).  This published book corroborates the thesis‘ basic SI model of people, process 

and product as shown Figure 1.  The book describes ―the work of many people from 

different functional disciplines, working on different system component products, in 

different process steps over time as the three fundamental integration components of 

function, product, and process respectively.‖  (21:42). Furthermore, the book extends the 

relationships between these integration components with ―a three-valued situation: co-

integration, cross-integration, and null values; creating a workspace of 27 (3 cubed) 

different integration possibilities.‖  (21:46).  And yet, this thesis only addresses seven 

integration areas which are comparable to Grady‘s cross-integration possibilities. 

The rest of the textbooks (i.e., related to Systems Engineering, Systems 

Management and Systems Architecture) and some of the available organizational SE 

handbooks (i.e., INCOSE, NASA, SMC and MIL-STD) also back-up the definition of SI 

as the action of ―working together‖ between the basic components of a system – people, 

processes and products.  Although not explicit, their descriptions of SI activities can be 

correlated with at least one of the seven integration areas proposed in this thesis. 

Systems Engineering and Integration 

Systems Engineering and Systems Integration are often thought of a two separate 

disciplines and practiced independently.  The size and complexity of modern DoD system 
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acquisitions, most notably DoD space systems acquisitions, has prompted a serious re-

evaluation of the roles these two disciplines play in an acquisition lifecycle.  The DoD 

Acquisition Guidebook (DAG) describes Systems Engineering as interdisciplinary that 

requires the integration of numerous activities and processes. 

―Systems engineering is an interdisciplinary approach or a structured, 

disciplined, and documented technical effort to simultaneously design and 

develop systems products and processes to satisfy the needs of the customer.  

Systems engineering transforms needed operational capabilities into an 

integrated system design through concurrent consideration of all Lifecycle 

needs.  As systems become larger and more complex, the design, 

development, and production of a system or system-of-systems require the 

integration of numerous activities and processes.  Systems engineering is the 

approach to coordinate and integrate all acquisition Lifecycle activities.  

Systems engineering integrates diverse technical management processes to 

achieve an integrated systems design.‖  (27:Ch 4, 3) 

While this description affords Integration a place within Systems Engineering, it 

fails to provide Integration context within SE or to distinguish between the two domains 

(i.e., SI and SE).  Leaving Systems Engineering as the overarching process includes 

elements of integration, subordinates SI to SE and discourages meaningful analysis of 

program SI. 

Systems Engineering is inextricably linked to the process of Integration within the 

framework of DoD Systems Acquisition.  This linkage, however, can be tenuous and 

highly dependent upon context.  If a user‘s context is components and processes, the 

meaning of Integration might be: 

―Integration is the process of incorporating the lower-level system 

elements into a higher-level system element in the physical architecture.‖  

(27:Ch 4, 34) 
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Integration is defined as the progressive linking and testing of system 

components to merge their functional and technical characteristics into a 

comprehensive, interoperable system. (35:Sec 4, 1-4) 

Integration means bringing things together so they work as a whole.  

System integration means bringing subsystems together to produce the 

desired result and ensure that the subsystems will interact to satisfy the 

customer's needs.  (21:3) 

When a user of the word ―Integration‖ is working from the context of functions, the 

meaning of Integration might be: 

A cornerstone of the IPPD management technique is the integration of all 

stakeholders into a cohesive working unit.  In traditional acquisition and 

development involving a sequential handoff of tasks, location of the 

various people was not a major concern.  Today‘s IPPD approach makes 

real-time integration of a program‘s various functions essential.  (26:7) 

Even the DoD Integrated Product and Process Development (IPPD) Handbook 

does not attempt to define Integration; instead, throughout this document, the reader is 

admonished to ensure Integration in all things so that good will result.  If integration is 

not achieved, the handbook warns, undesirable things will result. 

Similarly, the Capability Maturity Model Integration (CMMI) standard does not 

attempt to define ―Integration.‖  CMMI doctrine tells us that ―The organization is an 

integrated system capable of providing and sustaining the people, products, and processes 

necessary for the effective and efficient execution of its projects.‖  The definition of 

Integration is conspicuously absent from the CMMI discussion of Integration and the 

reader is left to their own interpretations.  (11:461) 

Life cycle integration is achieved through integrated development—that 

is, concurrent consideration of all life cycle needs during the development 

process.  (53:7) 
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Integration is obtained by designing a model or simulation to inter-operate 

with other models or simulations for the purpose of increased 

performance, cost benefit, or synergism.  (53:122) 

Space-Based System-of-Systems (SoS) Architecture 

DoD Space System Acquisition programs increasingly face challenges of 

effectively making multiple elements work together as they strive to improve the delivery 

of also an increasingly technology-sophisticated solution for defense mission usage.  

Although Space System Acquisition programs have the same overall objectives as other 

defense acquisition programs, space-based system solutions differ in the sense that the 

orbiting space vehicle(s) must be designed and built to survive for years in the harsh 

space environment with no physical maintenance and a one-shot mission-assured 

deployment.  The ground mission control systems are designed and built to operate these 

orbiting space vehicle(s) at a handful of locations.  The launch vehicle is designed and 

built for one successful short-lived purpose, which is to send and deploy the space 

vehicle with specific payloads into its orbit.  The Earth-bound users or subjects of these 

space-based systems are serviced several million miles away having to pass through a 

vast and harsh obstacle called the outer-space environment.  Figure 2 illustrates the 

distinct elements of a typical space-based SoS showing that there is much work to be 

done in decomposing the integration work into fundamental parts and in putting together 

the results into a well-integrated, high quality, cost-effective overall system solution with 

complete user satisfaction in mind. 
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Figure 2.  Space-Based System-of-Systems (SoS) Architecture (62:11) 

DoD Space System Acquisition Lifecycle Framework 

The framework used by this thesis to identify and trace SI activities is adapted 

from the National Security Space (NSS) Acquisition Policy (NSSAP) 03-01.  The 

framework sets the lifecycle stage for decomposing the scope of work into sequential 

iterative phases to provide disciplined control.  That is, the transition from one phase to 

another is usually defined by deliverables which are reviewed for completeness and 

accuracy and approved before work starts on the next phase.  Figure 3 illustrates the five-

phase lifecycle framework used to acquire space-based systems. 
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Figure 3.  Space System Acquisition Framework (24:5) 

Systems Engineering Technical Reviews & Audits 

In pursuit of characterizing and how to trace SI, the research first explored the 

subject on Work Breakdown Structures (WBS) which ―form the semantics frame of 

reference on the system levels of abstraction‖ (61:76).  However, it was difficult to 

incorporate the phases (and their activities) of the Space System Acquisition Framework.  

Nonetheless, the research shifted to using TR&As as described in the NSSAP 03-01 and 

DoDI 5000.02.  The later led the research to a more detailed illustration developed by the 

Department of the Navy as shown in Figure 4.  The figure comes with a software tool that 

provides individual checklists for each TR&A, which provided a deeper understanding on 

characterizing and how to trace SI; and paved the path for the establishment of a 

methodology. 
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Figure 4.  DoDI 5000.02 Systems Engineering Technical Review Timing (56:1) 

Due to the lack of space-system terminology in the DoDI 5000.02 TR&A set, the 

research pursued with NSSAP 03-01 references which led to the Aerospace 

Corporation‘s Mission Assurance Guide (MAG) which help build the foundation of this 

paper‘s data collection.  The following paragraphs are extracts that describe the 

relationship between lessons-learned and TR&A objectives. 

Technical reviews and audits entail a tremendous amount of detailed 

engineering and programmatic efforts.  Not only do the reviews make it 

possible for the interfaces and composite performance to be understood, 

they also establish a schedule imperative with entrance and exit criteria 

that synchronize the government and contractor expectations.  The reviews 

permit the MA experts to work in concert with program development 

resources and within the program‘s chain of command to fulfill their roles. 

(23:152) 

The review process also entails lesson learning.  A Lesson Learned is 

understanding gained by experience—either positive (as in a successful 
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test or mission), or negative (as in a mishap or failure).  Sharing lessons 

from the NSS program—i.e., to identify, communicate, and record good 

practices and adverse experiences with implications broader than localized 

corrective actions—is an important MA mechanism that benefits the 

future work of the organization, especially in the prevention of recurrence 

of accidents. (23:152) 

Table 1 maps the MAG‘s TR&As (includes traditional ones) with its Mission 

Assurance (MA) phase definition language into the acquisition phases referred to in the 

NSSAP 03-01 and the DoDI 5000.02 (23:23, 150-151).  Appendix D provides brief 

descriptions of each TR&A to be used to populate the baseline Traceability Matrix-

Model (Appendix C – Table 14). 
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Table 1. Mapping of TR&As and MA phases to NSS Acquisition Phases 

TECHNICAL REVIEWS & 

AUDITS (TR&A) 

MISSION 

ASSURANCE 

(MA) PHASE 

NSSAP 03-

01 PHASE 

DODI 5000.02 

PHASES 

<none> 

Phase 0: 

Concept 

Studies 

Phase 0: 

Concept 

Studies 

Material 

Solution 

Analysis Phase 

Manufacturing 

Management/Production Capability 

Review (MM/PCR) Phase A: 

Concept 

Development 

Phase A: 

Concept 

Development 

Technology 

Development 

Phase 

Integrated Baseline Review (IBR) 

System Requirements Review (SRR) 

System Design Audit (SDA) 

System Design Review (SDR) 

Preliminary Design Audit (PDA) Phase B: 

Preliminary 

Design 

Phase B: 

Preliminary 

Design 

Engineering 

and 

Manufacturing 

Development 

(EMD) Phase 

Preliminary Design Review (PDR) 

Critical Design Audit (CDA) Phase C: 

Complete 

Design 

Phase C: 

Complete 

Design Critical Design Review (CDR) 

Manufacturing/Production Readiness 

Review (PRR) 

Phase D1: 

Fabrication 

and Integration 

Phase D: 

Build & 

Operations 

Production and 

Deployment 

Phase 

Test Readiness Review (TRR) 

Formal Qualification Review (FQR) 

System Verification Review (SVR) 

Hardware Acceptance Review (HAR) 

Functional Configuration Audit 

(FCA) 

Physical Configuration Audit (PCA) 

Pre-Ship Review (PSR) 

Independent Readiness Review Team 

(IRRT)/Mission Assurance Team 

(MAT) Phase D2: 

Fielding and 

Checkout 
Mission Readiness Review (MRR) 

Flight Readiness Review (FRR) 

Launch Readiness Review (LRR) 

Post Flight Review (PFR) 

Phase D3: 

Operations & 

Disposal 

Operations & 

Support Phase 
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Space Systems Case Studies 

A number of case studies involving space systems were reviewed for this thesis.  

Case studies, in general, were used to derive experiential data on systems that have the 

potential to employ significant Systems Engineering; and therefore, Systems Integration.  

From this data; the question of ―How is Systems Integration Traceable?‖ will be 

answered.  The lessons learned addressed by these case studies will aid in answering this 

question are as follows. 

The Hubble Space Telescope (HST) Case Study 

The Program did not integrate the user community into the acquisition process. 

―In the early stages of the HST program the mechanism for involving the 

customer was not well defined.  The user community was initially 

polarized and not effectively engaged in program definition and advocacy.  

This eventually changed for the better, albeit driven heavily by external 

political and related national program initiatives.‖ (31:vi) 

―Nonetheless, collaboration between government engineers, contractor 

engineers, as well as customers, must be well defined and exercised early 

on to overcome inevitable integration challenges and unforeseen events.‖ 

(31:vi) 

Life Cycle Support was integrated into HST early in program life. 

―Life Cycle Support planning and execution must be integral from day 

one, including concept and design phases.‖  The results will speak for 

themselves.  Programs structured with real life cycle performance as a 

design driver will be capable of performing in-service better, and will be 

capable of dealing with unforeseen events (even usage in unanticipated 

missions).  (31:vii) 

HST did not effectively integrate program risk management. 

―For complex programs, the number of players (government and 

contractor) demands that the program be structured to cope with high risk 

factors in many management and technical areas simultaneously.‖ (31:vii) 
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HST provisions for a high degree of systems integration to assemble, test, deploy and 

operate the system is essential to success and must be identified as a fundamental 

program resource need from early on (part of the program baseline). 

―For HST, the early wedding of the program to the Shuttle, prior NASA 

(and of course, NASA contractors) experience with similarly complex 

programs, such as Apollo, and the early requirement for manned, on-orbit 

servicing made it hard not to recognize this was a big SE integration 

challenge.  Nonetheless, collaboration between government engineers, 

contractor engineers, as well as customers, must be well defined and 

exercised early on to overcome inevitable integration challenges and 

unforeseen events.‖  (31:7) 

The Peacekeeper Intercontinental Ballistic Missile Case Study 

 Dating back to the Strategic Arms Limitation Treaty I (SALT I) under President 

Richard Nixon, the United States (US) was limited to a predetermined number of 

Intercontinental Ballistic Missiles (ICBMs).  Increased ICBM capabilities had to come 

from quality and performance improvements in the ICBMs the US was authorized by the 

SALT I treaty to possess.  ―Missile X‖ (MX) was developed as a means to increase 

strategic combat capability through greater payload capacity and improved missile and 

warhead accuracy.  Additionally, the U.S. wanted to greatly increase the survivability of 

its missiles which were becoming more vulnerable to improved Soviet missiles with very 

accurate warheads.  The USAF began an acquisition program in 1973 known as ―Missile 

X‖ and purposely leveraged much of the existing technologies of the successful 

Minuteman program.  Under President Jimmy Carter, the program progressed and the 

missile entered full scale development in June 1979.  On 22 November 1983, President 

Ronald Reagan directed that MX should be called Peacekeeper; thus the Peacekeeper 

program commenced. 
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Political and public turmoil over the introduction of another nuclear missile and 

some very expensive and resource-intensive basing modes associated with it obscured the 

success of this outstanding missile development program.  The program‘s success was 

due primarily to a well-planned and executed systems development process involving 

highly complex and detailed Systems Engineering and Integration. 

This case study, the authors attributed the relatively quick and successful space 

system acquisition program partially to the outstanding systems engineering environment 

that was created and nurtured at the Ballistic Missile Organization (BMO) during the 

1970s and 1980s.  Specifically, they point out the following key factors in the program‘s 

success: 

 The disciplined systems engineering processes that were primarily 

developed by the Ballistic Missile Organization (BMO). 

 

 The BMO staff that allowed systems engineering and program 

management staff to work multiple ICBM programs as part of a 

knowledge management process. 

 

 The Associate Contractor Structure and the establishment of the USAF 

program office as the program integrator. 

 

 The integrated use of the Systems Engineering/Technical Assistance 

Contractor (TRW) by the SPO to support program management and 

control the systems engineering process. 

 

 The Systems Engineer had to be a leader and set the example in applying 

the engineering processes.  That was fundamental.  (50:iv) 

 

 The Systems Engineer had to be a person who had good intuition in terms 

of how to approach and solve problems.  The problems the Peacekeeper 

engineers encountered were similar to those experienced in developing the 

Atlas, Thor, Titan and Minuteman programs.  They had different 

acronyms but they were the same kinds of problems.  So they had to be 

able to invoke classical solutions to problems very quickly with little 

additional data.  (50:61) 
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 The Systems Engineer had to ensure that the program was planned in 

detail, that the plan was realistic, and that people could actually implement 

that plan.  (50:61) 

 

 The Systems Engineer had to be cognizant of budget limitations, 

especially in a complex program like Peacekeeper, which entailed 

numerous budget lines.  Engineers have an obligation to estimate costs in 

a comprehensive and complete manner.  (50:61) 

 

 The Systems Engineer had to be able to select competent people to be in 

charge of critical areas like propulsion, re-entry vehicle, launch control, 

and guidance.  While the chief engineer is responsible, that person has to 

rely on the expertise of those on his design and development teams.  

(50:61) 

 

 The Systems Engineer should not become involved in important program 

decisions without a complete understanding of appropriate technologies.  

(50:61) 

 

 The SPO should manage the technology base for the next program so that 

lessons learned from the previous system can be applied and technology 

transition decisions can be made based on an intimate knowledge of the 

results of the technology development efforts. 

 

 The case study also highlighted the importance of developing system 

engineers and allowing them to progress through a variety of missile 

programs to gain expertise.  (50:61) 

 

The Peacekeeper missile program provided a good example of a space system 

acquisition program that delivered a product near its projected budget and close to its 

scheduled IOC and FOC.  The missile portion of the program was developed, produced, 

and managed in a manner that today‘s Air Force program offices would recognize.  All 

technologies had demonstrated sufficient development and test before insertion in the 

missile.  There was a rigorous systems engineering process and a reasonable test 

program.  The missile program was adequately funded in a manner that caused few 
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schedule perturbations.  There were some production problems (motors and guidance 

systems), but those were addressed and fixed in a relatively short period of time.  (50:62) 

Global Positioning System (GPS) Case Study 

GPS consists of three major segments: the Space Vehicle (SV), the User 

Equipment (UE), and the Control Station (CS).  The space vehicle segment consists of a 

system of 24 satellites, configured in a constellation of six equally spaced orbital planes.  

Precise time is provided by a redundant system of rubidium and/or cesium atomic clocks 

on-board the SV.  Each satellite is capable of continuously transmitting L1 and L2 signals 

for navigation and timing, and L3 signal for nuclear detonation sensor data.  It is also 

capable of receiving commands and data from the master control station, and data from 

remote antennas via S-band transmissions (i.e., Air Force Satellite Control Network 

[AFSCN]).  GPS has always been available to the civilian community, foreign and 

domestic. 

The size, complexity, and importance of GPS dictate rigorous SI throughout all 

phases of its lifecycle.  Achieving the desired level of SI proved to be an elusive goal; as 

key stakeholders continually changed, priorities were adjusted and technology increased 

exponentially.  The number of groups needed to design subsystems, test these 

subsystems, and to integrate the subsystems eventually became so large and diverse that 

management of the groups became an endeavor tantamount to managing the program 

itself.  This fact alone made SI paramount for the success of the GPS program. 

―Large aerospace companies have worked diligently to establish common 

systems engineering practices across their enterprises.  However, because 

of the mega-trend of teaming in large (and some small) programs, these 

common practices must be understood and used beyond the enterprise and 
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to multiple corporations.  It is essential that the systems engineering 

process govern integration, balance, allocation, and verification, and be 

useful to the entire program team down to the design and interface level.‖  

(20:11) 

―The JPO decided to retain core systems engineering/system integration 

responsibility.  Col. Parkinson had a concern with the potential for 

proliferation of systems engineering groups within an organization.  He 

viewed systems engineering as a common-sense approach to creating an 

atmosphere to synthesize solutions based upon a requirements process, 

and to ensure good validation/verification of the design to meet those 

requirements.  He advocated using good systems engineering principles to 

work issues as they arose.‖  (20:38) 

―The integration role required contact with many government and industry 

entities.  A plethora of technical expertise organizations, test organizations, 

users, etc. required working interfaces and integration.‖  (20:39) 

During this time frame, the GPS JPO Director determined that the Systems 

Engineering Directorate needed to assume a more aggressive integration role.  He 

believed that unresolved issues between the GPS segments and/or systems were 

inappropriately being channeled to his level for resolution.  He wanted the Systems 

Engineering Directorate to take on the responsibility for the integration between the 

system segments.  By doing so, it was felt, SI would be equitably distributed among the 

GPS segments and more tightly controlled by the management hierarchy best suited to 

accomplish the tasks.  Conflict resolution between these segments would then only filter 

up to the GPS JPO when all attempts at lower levels had failed. 
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Other SE&I Relevant Subject Areas 

Systems Integration is a very broad application on the user‘s definition, scope, 

and viewpoint of the system.  While pursuing and achieving this paper‘s objectives, the 

following relevant topics help identify and trace the characteristics and attributes of SI 

and provide support evidence in defense of this thesis.  Each topic briefly describes its 

structure, function and purpose. 

Concurrent Engineering 

During the search of SI literature, Concurrent Engineering mostly came up as an 

alternative Systems Engineering approach to integrating engineering specialties to 

improve the product development process.  This approach attempts to integrate functional 

disciplines such as supportability, manufacturing, assembly, quality control, finance, 

marketing, and customer service during the design phase of the system‘s life cycle 

framework.  The specific description of concurrent engineering as a ―systems-

engineering perspective that focuses on integrating people, processes, problem-solving 

mechanism, and information‖ (42:328) supported this research‘s SI model as shown in 

Figure 1.  In addition to this academic reference, the National Aeronautics & Space 

Administration‘s (NASA) Systems Engineering Handbook implements this approach in 

the early stages of its Program/Project Lifecycle process flow (46:34). 

Systems Re-Engineering 

Another SE (or rather SI) approach designed to integrate changes to a system 

solution already in service use.  In periods of high-velocity environments where continual 

organizational change and associated change in processes and product occur, re-
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engineering is employed ―at the level of systems management, process, product, or any 

combination of these‖ (42:827).  A whole different subject matter all together, reviewing 

Systems Re-Engineering literature supported this thesis‘ SI-model as described in Figure 

1. 

Human Systems Integration (HSI) 

This subject matter also came out a lot in the search of SI.  Clearly, the topic‘s 

name inclusive of SI implies some relevant relationship.  Looking closely at the subject 

matter, Human Systems Integration indeed implicates actions of working together.  In 

this case, human factors are integrated into the design of a system solution.  Another 

name associated to HSI is Human Factors Engineering (HFE).  This design for usability 

approach supports this thesis‘ idea that people is part of a complete system – that is, 

addressing the human being and the interfaces between the human and other system 

elements (5:459). 

Enterprise Systems Integration 

A newer application of SI in today‘s environment of increasing demands for a 

system of systems that brings people around the world closer to each other at a touch of a 

button.  ―The wave of corporate mergers and growth of businesses using the Internet have 

boosted enterprise systems integration‘s profile in both Information Technology (IT) and 

business management.  Integrated enterprise systems can provide information across all 

points in an organization and the unique way systems integration blends business 

practices and IT‖ (34:xv). 



 

27 

Literature Review Summary 

A review of the core DoD literature devoted to SE and SI revealed that these two 

areas of engineering are inextricably linked within the framework of DoD Systems 

Acquisition.  This linkage, however, can be tenuous and highly dependent upon context.  

Although discussions of SE and SI are found throughout the core DoD engineering 

literature and space systems case studies, there is a complete absence of the formal, 

structured relationship between the two engineering disciplines.  Based on this literature 

review, it is concluded that a method for tracing SI in a Space System acquisition has not 

yet been proposed and documented. 
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III.  Methodology 

Considering the lack of a clear definition and standards for SI, this chapter will 

describe a step-wise path for identifying the characteristics of SI and tracing the value of 

SI within a space-system acquisition.  It will detail how data sources are selected and how 

the resultant data can be collected and reduced to support capturing measurable SI 

activities.  The methodology development approach begins with gleaning SI concepts 

from space-system acquisition lessons learned.  These SI concepts will then be compared 

to the products derived from the SI model based on integrating people, processes and 

products.  The methodology development path proceeds on by linking the objects in the 

seven SI areas and their interdependent roles in the technical reviews and audits 

processes; all occurring throughout the acquisition lifecycle framework. 

Identifying Systems Integration Characteristics 

The first step of this research‘s methodology involves characterizing SI to build a 

foundation on to which to develop logical, consistent and standardized (within this thesis) 

measures intended to assess space-system acquisition activities.  The idea is to employ 

the proposed SI model (as Chapter 1 describes) in capturing SI descriptions that uniquely 

identifies and distinguishes itself from its obvious implication.  The intent is to develop a 

foundation in understanding how to characterize SI in terms of its attributes, properties, 

and performance.  In the course of doing so, the concept of the proposed SI model 

(having seven areas where SI can occur by interacting, interrelating, and interfacing the 

basic system elements of people, processes and products) is validated. 

Irrespective of the disappointing outcome of finding little to no literature on ‗what 
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SI is and its value within DoD systems acquisition‘, it is evident that there is substantial 

documentation where SI characteristics can be derived or captured.  On account of these 

great volumes of text to make known SI attributes, properties and characteristics; content 

analysis is the research tool chosen as best summarized by the following citation: 

―Content analysis is a research tool used to determine the presence of 

certain words or concepts within texts or sets of texts. Researchers 

quantify and analyze the presence, meanings and relationships of such 

words and concepts, then make inferences about the messages within the 

texts, the writer(s), the audience, … To conduct a content analysis on any 

such text, the text is coded, or broken down, into manageable categories 

on a variety of levels--word, word sense, phrase, sentence, or theme--and 

then examined…to code for existence or frequency…‖ (10:1). 

The tool outputs a frequency tally of conceptual words and phrases inferred from these 

texts of which can be used with traditional quantitative statistical methods.  However, this 

research only uses the method to organize a qualitative assessment of SI inferences. 

Selecting the data source for this part starts with existing space-system related 

case study reports.  The intent is to extract text that infers any interacting, interrelating, 

and interfacing actions between or among people, processes and products.  This process 

required an abundance of data collection efforts, re-enforced with a background of 

knowledge on how space-systems are engineered and acquired in the DoD.  During the 

search, researchers found a collection (13:1-100) of 100 recognized space-system root-

cause-problem reports (PRs) investigated during the years of 1985-2005 with an average 

of 4.6 lesson-learned (LL) statements per PR.  A total of 465 lesson-learned statements 

resulted, providing already prepared, fact-based root-cause-problem analyses performed 

by space-system acquisition experts from the Aerospace Corporation. 

Data collection starts with a structured working document that lists LL statements 
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for each PR, while leaving room for identifying SI-elements and SI-area inferences.  

Each LL statement is analyzed for conceptual texts which are italicized and translated 

into the SI-elements of people, process or product.  At the same time, these texts are 

linked together inducing relationships that explain the actions of ―working together‖ as 

represented by the seven SI areas.  The most of what can be induced from this approach 

is ―this element may be integrated with the other element.‖  However shallow, the 

underlying logic allows deeper semantics in the translation.  The collection is imported to 

a spreadsheet (using Microsoft
TM

 Excel) for ease of tallying recurrences. 

Data reduction is minimally done since the LL statements were prepared for 

formal reporting.  Each LL report ―tells a failure story, spotlighting three questions: How 

did the mistake occur?  What prevented its detection?  Why did it bring down the entire 

system?‖  (10:21).  Therefore, none of the LL statements were altered.  The sentence 

structure, the words, and the conceptual content are kept intact.  Touch-up efforts are 

mostly required due to ―cut-and-paste‖ mis-translations. 

Chapter IV describes how the collected and reduced data is coded and analyzed to 

include the findings and implications along with the interpretations of the results. 

Tracing Systems Integration Characteristics 

The development of the traceability methodology continues by tracing SI 

characteristics as evidence to its relative value in the space-system lifecycle acquisition 

framework.  The significance of tracing SI is two-fold.  First, the ability to trace SI 

through an acquisition program provides the Program Manager (PM) and other 

stakeholders with insight into the efficacy of their SE endeavor.  Program SE consumes a 
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significant percentage of overall program budget and schedule and therefore must be as 

efficient and effective as possible.  Second, SE is often arcane and details can elude even 

the most astute PMs.  Thus, tracing SI provides the PM with valuable knowledge to 

support program implementation and reveal progress of the SE being conducted to 

achieve program objectives. 

Although SI is often perceived as intuitive, forward traceability analysis must be 

used to link the proposed SI elements and areas from one lifecycle phase to the next.  The 

intent is to establish a model in the form of a checklist-like matrix to help validate the 

interrelationships, interactions, and interfaces of people, processes, and products that are 

evident in the objectives, criteria and artifacts of a TR&A event.  This forward tracing 

uses a series of TR&As that are timed to the acquisition lifecycle phases and imply a 

multi-level system solution from concept to operations.  These TR&As are not only 

necessary for advancing through Key/Milestone Decision Points (KDP/MS) and 

acquisition phases, but also for performing the Systems Engineering and Integration 

(SE&I) necessary for achieving system life cycle cost, schedule and performance 

thresholds.  With these inherent aspects in TR&As, SI characteristics are traced 

throughout the lifecycle framework and are mapped from inputs to outputs of a multi-

level system. 

The development of the traceability matrix-model starts with gathering the 

appropriate information for the trace.  Results from the context analysis of the LL 

statements form the information that feeds into this matrix-model.  The high frequency 

tallies of SI areas are listed in the matrix as ―row‖ items.  Whereas, the TR&A set is 
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listed in the matrix as ―column‖ items.  The intersection between the row and column 

constitutes a ―checkbox‖ to indicate the presence of the SI area in that TR&A event.  

Table 2 illustrates the basic outline of this matrix-model to be populated with SI areas 

identified from the LL statements and the choices of TR&A events. 

Table 2. Tracing SI Matrix-Model 
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A: People-People 

                            

B: Process-Process 

                            

C: Product-Product 

                            

D: People-Process 

                            

E: Process-Product 

                            

F: Product-People 

                            

G: People-Process-Product 

                            

 

Appendix C of this thesis establishes the traceability matrix-model (Table 14), 

which will be populated with checkmarks linking these SI area-combinations with the 

entrance and exit criteria described in the recommended TR&A literature and their brief 

descriptions in Appendix D.  Finally, the number of SI areas found in each TR&A event 

forms the baseline to gauge the importance of SI in successfully accomplishing the tasks 

required by a TR&A.  These frequency numbers are not intended to be a key measure to 
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determine a pass/fail criterion for the individual TR&A, or for that matter the overall 

program SI.  The intention of these frequency numbers is to provide a context baseline 

for assessing the SI traceability of a space-system program as it transitions from one 

TR&A to another.  By doing so, a member of the program management team can 

demonstrate that SI is flowing-down the multi-level system and transitioning across the 

lifecycle phases.  However, this demonstration does not guarantee adequate program SI, 

but rather indicates knowledge of past space-system SI challenges and willingness to 

overcome these challenges. 

This traceability matrix-model can be used with real-world space-system 

acquisition programs; which would then fully validate its general application.  The 

programs‘ TR&A data is assessed for the presence of these SI areas.  A search for similar 

functionality names and concepts is conducted when making a trace.  When correlated, 

the ―checkbox‖ is marked, validating that this particular SI activity occurs during that 

specific TR&A event.  To conclude, the tallies of the number of SI areas found in each 

TR&A event are compared to the model‘s numbers; demonstrating TR&A traceability 

only acknowledges proof that a program has fulfilled the SI intent of that TR&A 

transition. 

As an example of the traceability matrix-model methodology, the GPS Case 

Study was subjected to the aforementioned process.  The results of this process are shown 

in Appendix C – Table 15. 
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IV. Analysis and Results 

Using the outputs from the data collection and reduction described in the 

methodology section (i.e. Chapter III), this chapter records the SI characteristics induced 

from the identification approach to include any findings that would help better understand 

what SI is about and the value of SI in space-system acquisition.  Furthermore, the 

traceability matrix model is implemented using the GPS Systems Engineering Case Study 

(20:1-72).  The intent of this implementation is to validate the utilization of the matrix-

model as a demonstration of improved efficiency, effectiveness and timely delivery of 

defense systems in general. 

Characterizing Systems Integration 

The main focus of the identification step is to infer from an LL statement the 

action(s) of the SI elements (i.e. people, processes, and/or products) ―working together‖.  

The interrelating, interacting or interfacing linking relationships between/among the 

inferred concepts are categorized into fitting integration areas as described by the 

proposed integration areas presented in Table 3.  Recognizing that interpretation of what 

constitutes an SI area might be biased due to the known body of knowledge at the time of 

statement analysis.  More often than some, going through more statement analysis widens 

the analyst‘s mind to ideas that was not within the criteria of the previous examination. 
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Table 3. Identification of Integration Areas 

ID DESCRIPTION DEFINITION 

A People-People 

Person/People interrelating with other 

Person/People.  Example: satellite contractor 

collaborating with launch contractor 

B 
Process-Process 

Process(es) interacting with other Process(es).  

Example: design for test 

C Product-Product 
Product(s) interfacing with other Product(s).  

Example: hardware functioning with software 

D 

People-Process 

or 

Process-People 

Person/People integrating Process(es) or 

Process(es) integrated by Person/People. 

Example: engineers analyze or evaluate assuring 

operators 

E 

Process-Product 

or 

Product-Process 

Process(es) integrating Product(s) or Product(s) 

integrated by Process(es).  Example: test 

requirement* or subsystem undergoes test 

F 

Product-People 

or 

People-Product 

Product(s) integrated by Person/People or 

Person/People integrating Product(s).  Example:  

requirement* driven by operator‘s need or 

program office dealing with proprietary data 

G People-Process-Product 

Person/People integrating Process(es) that 

integrates Product(s).  Example: satellite 

contractor models launch vehicle 

 

The following description demonstrates the identification step with three actual 

randomly selected LL statements.  In each statement, concepts that fit a characteristic of 

an SI element are italicized.  The details surrounding the chosen ―concepts‖ in a 

statement and the results of the author‘s root-cause-problem analysis help with the 

character analysis of the fundamental action(s) of SI.  The approach is simply identifying 

SI elements and actions that may be characterized appropriately into one or more 

integrated area(s) as previously described in Table 3.  The integration area(s) with the 

related ―italicized concept(s)‖ that represents the SI element(s) are listed below the 

lesson-learned statement.  An asterisk (*) following a concept word indicates a 
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requirement, which this thesis regards as a product item.  Examples: 

 Many programs require an independent analysis to ensure correct modeling. 

People-Process: program – analysis 

Process-Process: analysis – modeling 

 Implement exception handling to protect the flight processor from aborts due to data 

handling errors. 

Product-Product: protect* – processor – data 

Process-Product: handling – data 

 Review and follow operating and transportation procedures associated with cryogenic 

equipment to ensure safety to personnel, flight hardware, or facilities. 

Process-Process: review – follow – safety – facilities 

People-Process-Product: personnel – safety – procedures* 

Product-Product: procedures* – equipment – hardware 

Summarizing, there are two ―B‖ (Process-Process), two ―C‖ (Product-Product), 

one ―D‖ (People-Process), one ―E‖ (Process-Product), one ―G‖ (People-Process-Product) 

and the rest of the integrated areas are not identified. 

This content analysis starts with a compendium of lesson-learned statements from 

the Aerospace Corporation technical report on space systems acquisition.  There are 100 

root-cause-problem reports (PR), each having an average of 4.6 lesson-learned (LL) 

statements, totaling to 465.  For each LL statement, there is at least one involved SI area, 

totaling to 852.  Although the LL statements revolve around space-system acquisition and 

engineering terminology, data coding is necessary for some concepts that were 
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specifically chosen for emphasis; but can still be translated to a common term.  Appendix 

A captures these LL statements for each PR title; to include the researcher‘s 

categorization of the involved SI areas.  Behind the scene is a spreadsheet to tally the 

number of identified SI areas determining the rate of recurrence of each area.  Figure 5 

provides a graphical scorecard of the tallied seven SI areas found in these LL statements. 

 

Figure 5.  Systems Integration Areas Found in Lesson-Learned Statements 

Continuing with the identification process, these LL statements are analyzed by 

its ―face value‖ and decoded to bring about concepts that reflect characteristics related to 

SI.  That is, the concepts used in a statement are examined for fitting characteristics to the 

SI element of people, process or product.  Each LL statement is a point of a root-cause 

analysis emphasizing an effect that is related to a space-system acquisition problem.  
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Appendix B provides the coding sheets for each SI element.  The coding sheets record 

conversions of the ―concepts‖ extracted from the LL statements to traditional or 

commonly used words in space-system acquisition activities.  For example, the words of 

―checkout, validate, verify, inspect, and test‖ are coded to the process of ―evaluate‖.  

Table 4 capturers the top-level, type-labels for people, process or product used in space-

system programs; whereas, Table 5 briefly defines each of these SI element types with 

respect to space-system acquisition programs. 

Table 4. Common Types of Top-Level SI Elements in Space-System Programs 

PEOPLE PROCESSES PRODUCTS 

Acquirer Define System 

Developer Design Segment 

Operator Implement Subsystem 

Stakeholder Evaluate Hardware 

Supplier Deploy Software 

User Manage Data 

  Requirements 
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Table 5. Space-system Acquisition Program SI Element-Type Definitions 

SI 

ELEMENT-

TYPE 

DEFINITION 

Acquirer 

People who are overarching of the management and financial for 

delivering an efficient, effective and suitable system solution to the 

war-fighter for mission use. 

Developer 
People who engage with the architecture, design, fabrication, coding, 

assembly, and production of the system solution. 

Operator 
People who "fly" (i.e. command and control) the spacecraft ensuring 

it "stays within its box." 

Stakeholder 
People who have interest on benefiting from the program or who are 

affected by the operations of the system entity. 

Supplier 

People who are outside of the Developer's organization that provides 

parts of the system entity to include within scope services to the 

Developer. 

User 

People who utilize the payload of the spacecraft.  For example, a 

communications terminal user uses the comm.-payload to 

communication from one location to another; or a positional device 

user uses the navigational-payload to get data for the whereabouts. 

Define 

A top-level process that encompasses phase-activities related to 

identifying and analyzing the system entity, system architecture, 

system mission, system operations, system capability and system 

concept synthesis. 

Design 

A top-level process that encompasses phase-activities related to 

allocating the definitions as requirements into configurable, 

manageable items. 

Implement 

A top-level process that encompasses development phase-activities 

like fabrication, code, assembly, production and modification of the 

physical design. 

Evaluate 
A top-level process that encompasses phase-activities related to test, 

validation, verification, and quality assurance of a measurable item. 

Deploy 
A top-level process that encompasses phase-activities related to 

launch, install, flight, operations, and support process-activities. 

Manage 
A top-level process that encompasses the planning, scheduling, and 

budgeting for the program. 

System 

Or system-of-systems (SoS) represents the level of abstraction that 

describes the top-level representation of the entire solution from a 

user‘s or operator‘s frame of reference.  (61:81) 

Segment 
Refers to system entities at the first level of decomposition below the 

SYSTEM level.  (61:81) 

Subsystem Refers to system entities decomposed below the SEGMENT level. 
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SI 

ELEMENT-

TYPE 

DEFINITION 

Hardware 
A product made of material (i.e. physical) and its components 

(mechanical, electrical, electronic, hydraulic, pneumatic).  (36:5) 

Software 
A product composed of a set of computer programs, procedures, and 

possibly associated documentation and data.  (36:6) 

Data 

Recorded information of any nature (including administrative, 

managerial, financial, and technical) regardless of medium or 

characteristics.  (36:4) 

Requirements 

Any condition, characteristics, or capability that must be achieved 

and is essential to the end item‘s ability to perform its mission in the 

environment in which it must operate. (61:316).  In this thesis, this 

product element includes formal documentation like specifications, 

plans, and manuals. 

 

SI Element Coding 

For ease of sorting and frequency tallying, the ―concepts‖ extracted from the LL 

statements are individually captured and entered into a spreadsheet.  After the variety of 

concepts collected from a LL have been assessed for intended meanings; these concepts 

will be grouped and assigned a single code word that represents the composite intended 

meaning.  The frequencies of occurrence for each coded-concept are then tallied; 

indicating its relative importance to the SI element.  The coding sheets for the people-

element in Table 11, process-element in Table 12, and product-element in Table 13 are 

provided in Appendix B.  Table 6 provides the frequency tally of coded-item-types of SI 

elements to be integrated. 
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Table 6. Frequency Tallied (Coded) Types of SI Elements 

PEOPLE # PROCESSES # PRODUCTS # 

Acquirer 18 Define 82 System or SoS 46 

Developer 106 Design 135 Segment 75 

Operator 15 Implement 125 Subsystem 38 

Stakeholder 9 Evaluate 296 Hardware 544 

Supplier 10 Deploy 213 Software 85 

User 1 Manage 84 Data 61 

    Requirement 229 

TOTAL 159 TOTAL 935 TOTAL 1078 

GRAND TOTAL = 2172 SI element-instances 

 

Organizing these LL statement concepts into the top-level types of SI elements 

required insight on the lower level efforts of each element.  The challenge is accurately 

rolling-up the details into broader concepts without losing any pertinent information in 

support of a high-confident assessment.  Due to its 159 instances (i.e., the lowest tally of 

the three SI Elements) and less use of synonymic concept choices, the people SI 

element‘s coding required few retrospectives of the lesson-learned report.  Coding the 

process SI element of 935 instances into top-level definitions is a bit more challenging 

because of having a broader synonymic spectrum of contextual choices.  Despite the 

direct representation and unique character of a product, this SI element of 1078 instances 

is the most challenging because the items that are called-out span across all system levels 

of abstraction from parts to the system. 
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SI Area Coding 

Using the same code sheets, each SI area underwent the same translation process.  

Extra effort on organizing the concepts the same way was required to utilize the 

spreadsheet‘s capability to sort and support ease of tallying the SI area combination.  The 

same underlying assumption of having a higher frequency number indicates the 

importance or value of the SI area.  These combinations are used in establishing the 

traceability matrix-model showing the areas that need more attention than the others in a 

particular TR&A event.  Table 7 lists the first highly-tallied 10 combinations with their 

frequency (#) for each SI-area; whereas the full SI-area tallies are shown in Appendix C 

(Table 14). 

Table 7. First 10 Highly-Tallied (Coded) SI-Area Combinations 

# A: People – People # D: People – Process 

10 Acquirer – Developer 3 Developer – Evaluate 

4 Developer (Launcher) – Developer (Satellite) 2 Developer – Define 

3 Developer – Supplier 2 Developer – Design 

2 Developer (Payload) – Developer (Bus) 2 Developer – Implement 

1 Acquirer – Stakeholder (Independent) 2 Developer – Manage 

1 Developer – Developer 1 Acquirer – Define 

1 Developer – Operator 1 Acquirer – Manage 

1 Developer (Sub) – Developer (Prime) 1 Operator – Define 

1 Developer (System) – Developer (Software) 1 Stakeholder (Independent):Define 

1 Stakeholder (AFSPC) – Stakeholder (Public)     

# B: Process – Process # E: Process – Product 

26 Evaluate – Deploy 40 Deploy – Hardware 

17 Design – Evaluate 38 Evaluate – Hardware 

13 Define – Evaluate 24 Design – Hardware 

13 Design – Deploy 20 Evaluate – Requirement 

13 Evaluate – Evaluate 10 Design – Requirement 

13 Implement – Evaluate 10 Implement – Hardware 

12 Deploy – Deploy 10 Manage – Requirement 

9 Deploy –Manage 9 Define – Requirement 

8 Evaluate – Manage 9 Deploy – Requirement 

8 Implement – Deploy 6 Deployment – Segment 

# C: Product – Product # F: People – Product 

62 Hardware – Hardware 2 Supplier – Requirements 

38 Hardware – Requirement 1 Acquirer – Data 
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17 Segment – Hardware 1 Developer – Data 

13 System – Hardware 1 Developer – Requirements 

12 Hardware – Software 1 Operator – System 

9 Hardware – Data 1 Stakeholder – Hardware 

7 Segment – Requirement     

5 Hardware – Software – Requirement     

5 Requirement – Requirement     

5 Software – Requirement     

# G: People – Process – Product 

7 Developer – Evaluate – Hardware     

7 Developer – Implement – Hardware     

4 Developer – Design – Hardware     

4 Developer – Manage – Requirement     

3 Developer –Define – Requirement     

3 Developer – Deploy – Hardware     

3 Developer – Design – Requirement     

3 Developer – Evaluate – Requirement     

3 Operator – Deploy – Hardware     

2 Developer – Deploy – Requirement     

Findings – SI Characteristics 

This section reports what was discovered about SI from the lesson-learned 

statements by inducing actions between or among the basic systems elements of people, 

process and product.  The findings indicate that SI is indeed obvious and often taken for 

granted.  Of all the SI element instances combined (i.e., 2172), the concept of integration 

or any of its derivatives was mentioned three times as once a people and twice a process 

element – system integrator and integrate, respectively.  Despite the non-verbal or non-

written implications of SI in the construct of the statements, there are apparent cause-and-

effect interactions, interrelations and interfaces within the elements of a lesson-learned. 

‗PRODUCT‘ Oriented 

Results of 1078 ―product‖ instances from the context analysis confirm SI‘s ‗grass 

roots‘.  The astounding numbers on the product SI element and SI area ―C‖ (that involves 

only itself) corroborates the historical background of SI being confined to the technical 
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aspects of developing systems.  That is, SI has been a part of the broad area of systems 

engineering.  The ‗Hardware‘ tally of 544 (about half of the ‗product‘ instances) confirm 

that SI has a physical connotation and piecemeal quality – making different pieces of 

equipment work together.  Next in line is ‗Requirement‘ with 229 instances rightfully so 

supportive of the different pieces.  The rest of the product-element-types are about 

equally important to the SI picture. 

Rolling-up to higher levels in the product system hierarchy, ‗Segment‘ is 

emphasized between the subsystem, segment and system (i.e. 38, 75, and 46 respectively) 

element-type.  Oddly enough, this is the level where the people-element in each segment 

is represented by different organizations – that is, contracts in space-system acquisition 

language. 

The first 10 high frequency tally of product-element combinations (as shown in 

Table 7) with the other elements are represented in the following SI-areas: 

 ―Product-Product‖ (C) has a high tally of 62 instances where ‗Hardware‘ is 

interfacing with other ‗Hardware‘ and a total tally of 67 instances with other product-

items – ‗Data, Requirement and Software‘, excluding the system hierarchy product-

items.  The ‗Hardware‘ product-item does interface within the 3-system levels (as 

decomposed in this thesis) – system, segment, subsystem.  The results confirm the 

main feature is the physical characteristic of SI represented by ‗Hardware‘. 

 ―Process-Product‖ (E) has ‗Evaluate-Hardware‘ as the top in list with 48 instances; 

‗Deploy-Hardware‘ with 40; ‗Design-Hardware‘ with 31; ‗Implement-Hardware with 

12; ‗Manage-Hardware‘ with 7; and ‗Define-Hardware‘ with 6.  For the second 
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product-element contender ‗Requirement‘, the combining process-element ‗Evaluate‘ 

is first in the queue; followed by ‗Design, Manage, Define, Deployment, and 

Implement‘ in ranking-order.  This result emphasizes the important relationship 

between SI and test activities during product development. 

 ―People-Product‖ (F) has ‗Requirement‘ as most significant product-element 

combined equally to all people-types – ‗Acquirer, Developer, Operator, Supplier, and 

Stakeholder‘.  This finding shows requirement starts and ends with the people‘s 

needs. 

 ―People-Process-Product‖ (G) has all product-types evenly distributed among the 

other SI-elements.  Despite the fairly even distribution, the ‗Hardware‘ product-type 

can be seen as the main feature by some group-tally spikes. 

This mastery in product integration has indeed been demonstrated by the many 

large, interoperable, and complex space systems being used today – civil and military 

alike. 

‗PROCESS‘ Centered 

Following closely behind is the process SI element with 935 instances.  This 

revelation is not a surprise due to the fact that these ―integrated‖ processes brought about 

the product system.  The adequacy of these processes working together is reflected by the 

performance of the product system they created.  The number of SI area ―Process-

Process‖ (B) combinations indicates the need for coordination and control – an integrated 

management system (21:7).  Thus in some SE circles of discussion, the integrated action 

between Systems Engineering and Program Management came into being – Systems 
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Engineering Management (42:113). 

Looking closely at the tallies of the element-types, ‗evaluation‘ with 296 instances 

comes at the top of the list.  In this thesis‘ context, the process-type ‗Evaluate‘ 

encompasses any activities or variations related to test that is being performed at any in-

depth degree and level in the system hierarchy.  The element-type ‗Deploy‘ comes in 

second with 213 instances.  The literature review of SI reveals that the obvious part of 

working together can be seen in action in both these process-element types.  Descriptions 

of integration & test are commonly found; whereas portions of ‗Deploy‘ as defined in this 

thesis are usually described as Integrated Logistics Support (ILS). 

The process-element types of ‗Design‘ (135) and ‗Implement‘ (125) are following 

behind.  Both processes usually are not explicitly described with SI compared to the first 

two processes.  Nonetheless, these processes are performed in multi-level actions of 

working together – systems integration in vertical motion of the hierarchy.  The rest of 

the process-element types, ‗Define‘ and ‗Manage‘, are just as to the integration picture.  

Having a low number for ‗Define‘ perhaps implies that the coding for product-type 

‗Requirement‘ should have been applied to the process-element. 

The first 10 high frequency tally of process-element combinations (as shown in 

Table 7) with the other elements are represented in the following SI-areas: 

 ―Process-Process‖ (B) has ‗Evaluate-Deploy‘ as the top in the list with 26 instances; 

and the remaining ‗Evaluate‘ combinations with ‗Define, Design, Evaluate (different 

levels), and Implement‘ have fairly equal tally of about 13 instances each.  This result 

confirms the tightly coupled relationship of SI and test activities. 
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 ―People-Process‖ (D) shows for every process-type ‗Define, Design, Implement, 

Evaluate, Deploy and Manage‘ the interaction of all the people-type ‗Acquirer, 

Developer, Operator, Supplier, and Stakeholder‘ with some fashion or other.  

Involvement of these people-types in any of the process-types is supporting of 

successful SI foretold by the lessons learned. 

 ―Process-Product‖ (E)‘s first 3 combinations of ‗Deploy-Hardware‘, ‗Evaluate-

Hardware‘, and ‗Design-Hardware‘ have 40, 38, 24 instances; respectively.  In these 

tallies, the process-elements do not make the combinations come to the top but rather 

their product-element ‗Hardware‘.  These combinations just show that the ‗Hardware‘ 

needs SI attention the most during ‗Deploy, Evaluate and Design‘.  Looking closely 

to the next group of combinations in this SI-area, the product-element ‗Requirement‘ 

comes next. 

 ―People-Process-Product‖ (G) shows ‗Evaluate, Implement, and Design‘ as the 

process-elements of the first 3 combinations.  Again, the product-element ‗Hardware‘ 

is the focus of this SI-area. 

Today‘s successful utilization of space systems demonstrates this mastery of SI 

skills in coordinating and controlling (i.e. managing) the overall technical direction of 

their development. 

‗PEOPLE‘ Driven 

The tally of people SI elements resulted to a very low number (i.e. 159 instances) 

compared to the other two elements (i.e. process – 935 and product – 1078 instances).  

Seemingly, the low number suggests that the people involved in these lessons-learned do 
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a good job working together; whereas the people who were pointed out are challenging to 

work with.  However it may seem, the people who are a part of this SI system drives and 

accomplishes the interactions, interrelationships and interfaces between and among these 

SI-elements. 

The ‗Developer‘ with 109 instances leaves behind all the people-types.  

Understandingly, the developer is mostly contracted to ―integrate‖ the process-types 

resulting into the product-types.  The rest of the people-types are the recipients who may 

discover this integrated system as useful, effective, and affordable. 

The first 10 high frequency tally of people-element combinations (as shown in 

Table 7) with the other elements are represented in the following SI-areas: 

 ―People-People‖ (A) has ‗Acquirer-Developer‘ as the top in the list with 10 instances; 

‗Developer-Developer‘ with 6 each developing different portion of the overall system 

solution; and ‗Developer-Supplier‘ with 3 showing interactions within same team.  

The rest of the combinations have 1 instance each.  The results confirm the main 

driver of most of these processes – the Developer. 

 ―People-Process‖ (D) has ‗Developer-Evaluate‘ as the top with 3 instances; 

‗Developer‘ interacting with ‗Define, Design, Implement and Manage‘ has 2 

instances each; and the rest with one each – ‗Acquirer-Define‘, ‗Acquirer-Manage‘, 

‗Operator-Define‘ and ‗Stakeholder-Define‘.  Involvement of Acquirer, Operator and 

Stakeholder in the ‗Define‘ process is very desirable as confirmed by the lessons 

learned. 

 ―People-Product‖ (F) has explicitly ‗Supplier-Requirement‖ as the top with 2 
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instances; ‗Developer‘ with ‗Requirement‘ and ‗Data‘ having 1 each; and the rest 

having one each – ‗Acquirer-Data‘, ‗Operator-System‘, and ‗Stakeholder-Hardware‘.  

Results still corroborating ‗Developer‘ as main driver, whereas the rest have 

supporting roles. 

 ―People-Process-Product‖ (G) shows a high tally of 60 instances where the 

‗Developer‘ with a variety of combinations is driving different processes to produce 

different product-items. The ‗Operator‘ combinations of 11 emphasize the operator‘s 

role as recipients to the products produced by the driven processes. 

This mastery of people SI skills is indeed demonstrated by the successful 

performance of the space systems being used today. 

‗PEOPLE–PROCESS–PRODUCT‘ Integrated 

Isolating the characteristics of each SI element made evident the need to 

accomplish the action of all three working together.  The people system drives the 

process system to bring into being the product system with value to the customer.  

However, the results of the data collection as shown in Figure 5 displays the SI area 

―Process-Product‖ (E) being the highest instead of ―People-Process-Product‖ (G) area. 

Looking closely at each isolated SI element analysis revealed that the people 

system was unarticulated in the lessons-learned.  There seems to be an assumption that 

the people-element ‗Developer‘ is behind most of it all; thus, the element was not 

explicitly communicated.  With this being said, adding the appropriate people-element 

(most likely the ‗Developer‘) to each combination in the SI area ―E‖ (291 instances) 

would make area ―G‖ (85+291=376 instances) surpass area ―E‖‘s tally. 
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The lack thereof people-element is confirmed by the low tally of SI areas 

―People-Process‖ (D) and ―People-Product‖ (F).  However, using the same concept that 

the people-system drives the process-system; SI area ―Process-Process‖ (B)‘s tally (204 

instances) will contribute to area ―D‖ raising its bar (14+204=218 instances).  In 

retrospect, by flipping this concept to having the people-system as the recipients, 

operators, or users of the product-system; then SI area ―F‖ will consume the tally of the 

―Product-Product‖ (C) area (228 instances) also raising its bar (7+228=235 instances).  In 

doing all these suggestions: area ―D‖ increases its tally by 204 (area B‘s), area ―F‖ 

increases its tally by 228 (area C‘s) and area ―G‖ increases its tally by 291 (area E‘s).  

Area A should increase, however, the mathematics of the people-element is not as 

straight forward as the process and product elements.  Deliberate ―People-People‖ 

integrated combination in the context of the lessons-learned used are not articulated due 

to the lessons-learned authors‘ objectives.  Figure 6 illustrates a new graph with 

―normalized‖ SI areas with an increasing curve denoting the integrated dependency of the 

three SI-elements. 
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Figure 6.  “Normalized” Systems Integration Areas 

Multi-Level and Multi-Dimensional 

Because of the highest total tally of the SI product-element, SI has to have the 

same multi-level structure in order to bring together lower product items of a system into 

higher product-items.  This interfacing action is usually when SI is realized and can be 

measured through the number of items to be interfaced per level.  This measurement 

timing is confirmed by the high tally of the process-element ‗Evaluate‘ which 

compliments these SI activities ensuring the product-items ―work together.‖  Not only 

does SI need to perform within the levels of each element (represented by SI areas A, B, 

and C); but also have to synchronize its performance between elements (represented by 

SI areas D, E, and F).  This integration effort between SI-elements interacting, 

interrelating, and interfacing demonstrate SI‘s multi-dimensional characteristic. 
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Traceability Matrix-Model 

The ability to trace SI activity throughout the life-cycle of a DoD Space System 

Acquisition is one of the research objectives of this thesis.  The other research objective 

―What are the characteristics of SI‖ will be answered in the process of answering the first 

research objective.  One cannot be answered without answering the other. 

To understand SI traceability, a simple analogy will be used. 

If your computer fails to boot up when you power it on, you will 

normally follow a structured sequence of procedures to troubleshoot the 

problem, fault isolate the problem, and take corrective action.  First, the 

operator must know the high-level functions that are performed in order to 

power on and boot up the computer.  This set of requirements is analogous 

to the acquisition professional knowing the standard DoD systems 

acquisition process (e.g., phases, milestones, key decision points, reviews, 

audits, etc.).  The frustrated computer operator must know that a power 

source (AC or DC) must be applied to the computer.  Setting the ON/OFF 

switch to the ON position is next.  After successfully conducting these two 

tasks, the operator will review progress made up to this juncture and 

assess whether any adjustments or corrective actions are required before 

proceeding forward.  This process will continue until the computer is up 

and running, or another course of action is initiated (e.g., call the help 

desk). 

Accordingly, to develop a SI traceability model that can be used to assess 

program SI; first the SI Areas must be established.  This task was performed in Chapter I, 

Figure 1 and resulted in seven SI Areas.  As discussed in Chapter I, SI Areas represent 

the people, processes, and products that interact, interrelate, or interoperate in order to 

successfully manage a DoD systems acquisition program.  Each of the SI Areas was 

further decomposed into SI elements that are involved in the activities prescribed by the 

TR&A processes.  For example; in the People-People SI Area, the people that are 

interacting may be Acquirers, Developers, Stakeholders, or Operators.  The Process-

Process SI Area is decomposed in the same manner; for example, definition, design, 
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deployment, or evaluation may be SI elements for this area.  All seven SI Areas are 

decomposed in this manner (see Table 7).  Much of this thesis is devoted to the 

integration of these SI Areas.  However, to trace the existence of SI activities occurring in 

a program and thereby assess the efficacy and adequacy of the program‘s SI, there must 

be standards by which SI can be measured. 

To form a working standard, SI elements were coded to draw out the conceptual 

meaning of words and phrases used by the People involved in a DoD systems acquisition 

program.  Coding started with Concept Analyses (10:1) performed on the LL statements.  

Once the words and concepts that were most relevant and applicable to program 

management and systems engineering were identified (through concept analysis), they 

were grouped into predetermined categories.  These categories were each assigned a 

single code word that conveyed the intent of the concepts being expressed by the People 

using them.  Code words were then decomposed in a manner that facilitated the 

allocation to one or more of the TR&A events (see Table 5). 

A matrix consisting of the conventional DoD systems acquisition TR&As, 

organized by acquisition phases, was constructed with the TR&As listed along the top, 

and the SI Areas with elements listed along the side.  The matrix which is fully populated 

with ―ideal‖ entries becomes the model or standard, against which a program under 

review can be measured (see Table 14).  Table 8 summarizes the matrix with totals of 

each SI-Area per TR&A event. 
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Table 8. Traceability Matrix-Model Summary 
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A: People-People 

25 TOTAL   2 
 

4 8 9 
 

9 
 

10 
 

10 10 10 10 10 
 

10 10 10 
 

3 

B: Process-Process 

204 TOTAL   11   15 15 17   20   36   38 38 38 38 38   38 38 38   38 

C: Product-Product 

228 TOTAL   7   8 17 29   37   37   37 37 37 37 37   37 37 37   37 

D: People-Process 

15 TOTAL   4   4 5 7   7   7   7 7 7 7 7   7 7 7   5 

E: Process-Product 

291 TOTAL   5   17 23 34   41   60   71 71 71 71 71   71 71 71   71 

F: People-Product 

7 TOTAL   3   3 3 4   5   6   6 6 6 6 6   6 6 6   3 

G: People-Process-Product 

85 TOTAL   9   9 14 18   35   44   50 50 50 50 50   50 50 50   50 
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Findings – SI Traceability 

 The following findings are the results of tracing the SI-areas combination-items 

(which were extracted from space-systems acquisition lessons-learned) through the 

lifecycle TR&A transitions. 

A: People – People 

Analyzing the summary results from the traceability matrix-model as shown in 

Table 8, this SI-area starts with minimum ‗people-people‘ interactions in the early phases 

(i.e. Concept Studies and Development phases) and gradually increases as the program 

lifecycle transitions to the design phase (i.e. Preliminary Design phase).  From here, the 

SI area ―A‖ interactions transitions constantly through Operations & Disposal phase 

where these interactions drop to the minimum.  However, this drop should not be an 

indication that there are less ‗people-people‘ interactions in this phase; rather it confirms 

that this SI area‘s combination-items which were extracted from the LLs are focused on 

the design and development phases.  Perhaps, these phases represent the program‘s 

critical lifecycle stages where SI interventions and practices are mostly in need.  Looking 

closely to the details of these combination-items, the people type ‗Developer‘ interacting 

with another ‗Developer‘ and other people-types (i.e. ‗Operator‘ and ‗Supplier‘) supports 

the concentration of TR&A events that traces from System Design Review (SDR) 

through Launch Readiness Review (LRR).  In addition, the drop during the Post Flight 

Review (PFR) indicates the people-type ‗Developer‘ having the ―main-character‖ role 

does not transition throughout the program‘s lifecycle – a disconnect? 
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B: Process – Process 

There is a similar increasing trend to the traceability of the ‗process-process‘ 

interrelationships but shoots up during the Critical Design Review (CDR), reaches its 

peak at Production Readiness Review (PRR) and remains constant through the Post 

Flight Review (PFR).  The CDR event emphasizes the start of the ‗Evaluate‘ process (this 

process-element ranked the highest); whereas the ‗Define-Design‘ processes starts the 

traceability from the beginning TR&A, that is Alternative System Review (ASR).  

Hereinafter, the ―chain‖ of processes is iterative due to changes and modifications.  This 

practice indicates the importance of tracing SI to ensure a seamless flow from inputs to 

outputs of all processes.  Again, the same segment of phase transitions show the need of 

focused SI practices. 

C: Product – Product 

The value of SI within ‗product-product‘ interfacing-activities starts with SDR 

and traces constantly throughout the program‘s lifecycle.  The traceability trend is very 

similar to the ‗process-process‘ SI area due to the fact that these processes bring about the 

product system.  The early phase TR&A events trace SI activities that are mostly 

involved with conceptual, high-level product-type ‗Requirement‘ (the second highest 

product element).  Understandably, these product-types drive the ―fanning‖ 

decomposition of the product-system where SI practices are critical to the program‘s 

success.  SI objectives should ensure interconnectivity flows down and feeds-back up the 

infrastructure of the product system.  The highest ranking product element, ‗Hardware‘, 

as extracted from the LLs confirms this ‗Requirement‘. 
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D: People – Process 

This SI-area is the first of crossing SI-elements and tracing their ―working 

together‖ practices.  The trend of the traceability shows a ―bell-curve‖ starting and ending 

with minimum ‗people-process‘ integration.  This trend confirms that the people-type 

‗Developer‘ (highest ranking) heavily engages during the ‗Define-Design-Implement-

Evaluate-Deploy‘ processes; whereas the other people-types, like the ‗Acquirer‘ and 

‗Operator‘, engage themselves at the beginning and end of the lifecycle and provide 

oversight to the ‗Developer‘s‘ activities.  Oversight by these type of people is necessary 

because the products brought about by the ‗Developer‘s‘ processes are ultimately for 

their utilization.  

E: Process – Product 

This next SI-area continues the SI traceability indicating the height of SI‘s value 

during Fabrication & Integration Phase.  The top ranking process-element ‗Evaluate‘ and 

product-element ‗Hardware‘ confirms the high frequency tally of this SI-area‘s 

combination-item, ‗Evaluate-Hardware‘.  This SI-area‘s traceability trend is the same as 

the ‗process-process‘ integration which demonstrates that the product system is the 

outcome of the process system.   

F: People – Product 

The ‗people-product‘ SI-area shows a similar ―bell-curve‖ as the ‗people-process‘ 

SI-area.  This similarity shows that the practice of SI begins and ends with the people 

system.  Needless to say, the process and product systems are quite useless without the 

people system steering the flow to success. 
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G: People – Process – Product 

This SI-area culminates the actions of ―working together‖ between and among 

these SI-elements which are shown individuality in SI-areas ―A‖ to ―F‖.  This 

dependency and linking phenomena confirms that the practice of SI is ―People-Driven‖, 

―Process-Centered‖, and ―Product-Oriented‖.  The traceability trend of this SI-area will 

be similar to SI-areas ―B‖, ―C‖, and ―E‖ where their activities start increasing to a 

constant value.  Perhaps, a saturation point controlled by the process-system‘s definition 

of the product-system. 

Applying Traceability Matrix-Model with GPS Case Study 

The same traceability approach in establishing the matrix-model as previously 

described is used in assessing a DoD space-system program.  The DoD space system 

program selected for this assessment is GPS, based on the Case Study performed by the 

Air Force Institute of Technology (AFIT).  Results from this assessment (see Table 15) 

have no relevance to the program‘s success (or lack of), or the quality of SI being 

performed.  The assessment only demonstrates the ability to trace SI using TR&A 

transition criteria as evidence to answer investigative question number two. 

This program has been chosen for its program information availability, recent 

implementation and comprehensive post-milestone program analyses.  Information for 

the program under review is required to determine the TR&As accomplished during an 

acquisition phase of interest.  Recent program implementation is important to align case 

study TR&A events with standard DoD Systems Acquisition TR&A events used in this 

thesis.  Post-milestone program analyses are required to validate the SI traceability 
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resulting from the assessments performed on the programs that were reviewed. 

The Traceability Matrix-Model will be applied to the TR&A events derived from 

the GPS case study.  Words and phrases used in the GPS case study to indicate that a 

TR&A event had been accomplished were coded to ensure a standard process for 

gathering the elements used in the traceability matrix.  Using the coded words, the GPS 

case study was searched for these word and their associated TR&A events.  These events 

were then tallied according to the SI Areas indicated by the coded words and the tallies 

inserted into the traceability matrix.  The subsequent GPS case study traceability matrix 

was then compared to the Standard traceability matrix.  If the two matrices were closely 

aligned in proportionality, then it was deduced that the GPS program represented by the 

case study was employing SI sufficiently.  If, however, a comparison of the two matrices 

indicated that there was a significant difference, then it could be deduced that the GPS 

program was not employing SI sufficiently. 

Table 9 summarizes the traceability matrix for the GPS Case Study; whereas 

Table 15 populates the traceability matrix model with the program data presented by the 

case study.  Keep in mind that this GPS case study‘s objectives focused on Systems 

Engineering; thus may not be closely relevant to the SI and TR&A concepts that can be 

traced using this thesis‘ traceability method. 
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Table 9. GPS Traceability Matrix Summary 
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A: People-People 

25 TOTAL   0   5 2 4   2   4   5 0 0 5 0   0 0 0   0 

B: Process-Process 

204 TOTAL   0   11 7 6   9   7   7 0 0 4 3   0 0 0   0 

C: Product-Product 

228 TOTAL   0   8 1 7   0   11   9 0 0 0 6   0 0 0   0 

D: People-Process 

15 TOTAL   0   3 0 3   0   2   5 0 0 2 0   0 0 0   0 

E: Process-Product 

291 TOTAL   0   0 0 1   0   0   0 0 0 0 0   0 0 0   0 

F: People-Product 

7 TOTAL   0   0 2 0   1   0   0 0 0 2 2   0 0 0   0 

G: People-Process-Product 

85 TOTAL   0   11 4 0   7   0   8 0 0 1 0   0 0 0   0 
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Findings – GPS Program’s SI Traceability 

 Comparing the tallies from the GPS Case Study SI Traceability matrix and those 

from the Standard SI Traceability matrix (see Table 10) it is clear that there is no direct 

linear relationship between the two.  This outcome was expected and is explained by the 

variability in individual space-systems acquisition programs.  The Defense Acquisition 

System recognizes the variability in individual DoD acquisition programs and 

accommodates this variability.  Therefore, while it is possible to use the SI traceability 

methodology (including the matrix) to trace the application of SI occurring in a space 

system acquisition program, it is not possible to quantitatively measure SI adequacy. 

 The GPS Case Study SI Traceability example clearly demonstrates that SI can be 

traced throughout the acquisition lifecycle of a space-system acquisition program.  This 

example similarly demonstrates that the tally of TR&A events that occurred in the GPS 

program cannot be used to assess SI adequacy of the GPS program.  One reason for the 

variance between the Standard SI Traceability Matrix and GPS Case Study SI 

Traceability Matrix TR&A tallies is that the GPS Case Study consisted of only three 

phases, Phase I – Concept/Validation, Phase II – Full-Scale Engineering Development 

and Phase III – Production. (20:27)  Furthermore, the GPS program that the case study 

examined started in 1973 and achieved Full Operational Capability (FOC) in 1984; which 

means that the DoD Systems Acquisition process (i.e., TR&As, phases, etc.) was 

different from that used for the Standard SI Traceability matrix. (20:27)  The GPS Case 

Study SI Traceability example does, however, provide a tool which can be used to assess 

the phasing and types of TR&As being conducted to support an acquisition program.  It 



 

62 

will remain the responsibility of the Program Manager and the Chief Engineer to interpret 

the results of this tool.  Professional judgment and knowledge must be brought to bear on 

the SI Traceability Matrix results.  The PM and CE can then project the interpreted 

results onto the actuals of a given acquisition program and derive a satisfactory 

interpretation of the results and plan a course of action that will add value to their 

program. 
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Table 10. GPS Case Study vs Standard SI Traceability 

P
h

as
e 

0
: 

C
o

n
ce

p
t 

S
tu

d
ie

s 

A
lt

er
n

at
iv

e 
S

y
st

em
 R

ev
ie

w
 (

A
S

R
) 

P
h

as
e 

A
: 

C
o

n
ce

p
t 

D
ev

el
o

p
m

en
t 

In
te

g
ra

te
d

 B
as

el
in

e 
R

ev
ie

w
 (

IB
R

) 

S
y

st
em

 R
eq

u
ir

em
en

ts
 R

ev
ie

w
 (

S
R

R
) 

S
y

st
em

 D
es

ig
n

 R
ev

ie
w

 (
S

D
R

) 

P
h

as
e 

B
: 

P
re

li
m

in
ar

y
 D

es
ig

n
 

P
re

li
m

in
ar

y
 D

es
ig

n
 R

ev
ie

w
 (

P
D

R
) 

P
h

as
e 

C
: 

C
o

m
p

le
te

 D
es

ig
n

 

C
ri

ti
ca

l 
D

es
ig

n
 R

ev
ie

w
 (

C
D

R
) 

P
h

as
e 

D
1

: 
F

ab
ri

ca
ti

o
n

 &
 I

n
te

g
ra

ti
o

n
 

P
ro

d
u

ct
io

n
 R

ea
d

in
es

s 
R

ev
ie

w
 (

P
R

R
) 

T
es

t 
R

ea
d

in
es

s 
R

ev
ie

w
 (

T
R

R
) 

S
y

st
em

 V
er

if
ic

at
io

n
 R

ev
ie

w
 (

S
V

R
) 

F
u

n
ct

io
n

al
 C

o
n

fi
g
u

ra
ti

o
n

 A
u
d
it

 (
F

C
A

) 

P
h

y
si

ca
l 

C
o

n
fi

g
u

ra
ti

o
n

 A
u
d

it
 (

P
C

A
) 

A: People-People            

 
0/2 

 
5/4 2/8 4/9 

 
2/9 

 
4/10 

 
5/10 0/10 0/10 5/10 0/10 

B: Process-Process           

 
0/11 

 
11/15 7/15 6/17 

 
9/20 

 
7/36 

 
7/38 0/38 0/38 4/38 3/38 

C: Product-Product           

 
0/7 

 
8/8 1/17 7/29 

 
0/37 

 
11/37 

 
9/37 0/37 0/37 0/37 6/37 

D: People-Process           

 
0/4 

 
3/4 0/5 3/7 

 
0/7 

 
2/7 

 
5/7 0/7 0/7 2/7 0/7 

E: Process-Product           

 
0/5 

 
0/17 0/23 1/34 

 
0/41 

 
0/60 

 
0/71 0/71 0/71 0/71 0/71 

F: People-Product           

 
0/3 

 
0/3 2/3 0/4 

 
1/5 

 
0/6 

 
0/6 0/6 0/6 2/6 2/6 

G: People-Process-Product         

 
0/9 

 
11/9 4/14 0/18 

 
7/35 

 
0/44 

 
8/50 0/50 0/50 1/50 0/50 

Note:  TR&As end after Phase D1 due to the GPS program strategy 

Legend:  Tallies are given by – GPS/Standard (where Standard tally in bold) 

 

Findings – Measuring Integration 

Although measuring integration is not the primary focus of the research, the hope 

is that the course of this research will eventually lead to some other measurements of SI.  

The following measurements were the most commonly mentioned indicators relevant to 

SI which this research corroborates with its results from applying the proposed models to 

the Space System Acquisition framework.   
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Traceability 

Since SI is multi-dimensional and hierarchical (i.e. multi-level) in nature, the 

capability to trace its performance can be measured.  Traditionally, SI‘s traceability is 

measured within the ―Product-Product‖ area through diligent analyses and control of its 

element-type ‗Requirement‘ (specifically, interface control requirements).  The product-

element type ‗Requirement‘ is enabled by the process-element type ‗Definition‘.  This 

link in itself is an SI traceability factor.  This thesis‘ research also includes tracing SI 

across the Space System Acquisition framework using the TR&A transitions.  

Traceability is also dependent on the process of architecting the three SI-elements.  Their 

decomposition is represented by breakdown-structures, commonly known as Work 

Breakdown Structures (WBSs). 

Complexity 

This measurement is another effect of SI‘s multi-dimensional and multi-level 

character.  SI complexity is viewed and allocated differently by each of the three SI-

elements.  Typically, SI complexity is assigned the difficulty to successfully achieve the 

action of ―working or bringing together‖ system elements.  The most common viewpoint 

is confined to the product-element which is demonstrated by its high frequency tally.  SI-

Product complexity is defined as the physical number of objects, units, or components to 

be integrated, that is, internal or external to a location-point in the hierarchy.  For the 

process-element, SI complexity is measured as the number of tasks, activities, and timing 

to be integrated.  The SI-Process elements extracted from the lessons-learned and their 

interrelationship between and among the other SI-elements bring about the amount of 
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effort to consistently control the similarities and differences of each process.  Whereas, 

the SI complexity of the people-element applies to the number of individuals, specialties, 

and amount of authority involved.  All encompasses the participation of these actions of 

integrating the development of the overall system solution. 

Connectivity 

Making various pieces of often disparate equipment work together defines the 

measurement of connectivity.  This measurement relates to the SI complexity of the 

product-elements addressing the lower-level physical (i.e. form and fit) characteristics of 

the interfaces (e.g. the number of input and output ports).  Successful connectivity relies 

heavily on the process of requirements definition, specifically between interfaces 

represented by interface control documents (ICDs). 

Interoperability 

Interoperability applies to the functionality (as oppose to physicality) of one SI-

element working together with other elements.  During this action of integration, the SI-

element‘s capabilities are exploited to deliver an overall system solution that minimizes 

operations of stovepipe systems.  Generally, this measurement entails the working 

together of the data structures of specific functions of the physical product-elements.  

Successful interoperability depends on the seamless interrelationships of the processes 

that develop the products resulting in a suitable and effective system.  This integrated 

system is expected to interoperate (minimum operator intervention) with other systems 

used during mission employment. 
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Compatibility 

Compatibility has an inherent human-element in it.  Thus, this measurement 

focuses on the people-element of SI complexity.  The SI point of view depends on the 

acquisition phase the system solution is in expanding or leveraging the people-element‘s 

skills and capabilities in accomplishing the difficult tasks of the process-elements.  This 

measurement applies to the consistent control of the similarities and differences of the 

specialties involve in achieving the objectives of each space-system acquisition phase 

from concept development to operations and support. 

Implications and Interpretation 

Through ―life integrating‖ analogies, this section describes the implications and 

interpretations on SI as a whole.  It is one way of emphasizing the people element in the 

SI construct.  These analogies are based on the analysis of the lessons learned, the review 

of the subject matter‘s literature, and the researcher‘s experiences on actions of ―working 

together.‖ 

 ‗SI‘s Taste of Mango‘ 

Describing the taste of mango to someone who has never tasted one is like 

describing SI – very challenging.  More often than not, description is transferred to trying 

the mango.  This is because the taste of mango cannot be directly observed and similarly 

the construct of SI is underlying to the fundamentals of doing anything within the system 

being integrated.  This tendency to expect a physical or visual description of SI is 

demonstrated by the high tally of the product-element extracted from lessons-learned 

which were humanly written.  Whereas, the high tally of the process-element implies 
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―experiencing‖ SI like trying the mango. 

‗SI Takes Two to Tango‘ 

Like watching two people beautifully dance the Tango, it takes at least two 

element-types to successfully demonstrate the action of working together – to link one 

level with another level, to perform one function with another function, to build one 

component with another component, or to design a requirement with tools and materials 

into things.  As listed in the traceability matrix-model (Appendix C – Table 14), the 

combinations of SI-elements in the SI areas (A, B, C, D, E, F and G) confirm this 

phenomenon.  Additionally, Figure 5 Figure 5shows SI areas B, C, and E as the toppers 

with E as the forerunner.  The combinations in the ―Process-Product‖ (E) area reveal that 

processes with different objectives have to work in the same, synchronized patterns to 

produce integrated sound quality products at all levels of the hierarchy.  Also, the people 

behind the scenes with different experiences have to ―dance‖ their way in processing 

products in the same program. 

‗SI‘s World Trade Center‘ 

As tragic as the toppling down of the World Trade Center, SI‘s hierarchical nature 

topples down when one element is threatened.  SI structure is realized by its product-

element.  The raw product-type descriptions in the lessons-learned traced the root-causes 

down to the smallest unit possible.  This analysis would not have been as detailed if not 

for the design descriptions.  Thus, the process system must have the same levels of 

abstraction as the product system complimenting each other.  These actions are driven by 

a similar organizational hierarchy in order to control and coordinate the transitions. 
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‗SI of All Trades, Master of None‘ 

Inherently, SI requires cursory understanding of the attributes, properties, 

characteristics, and performance of the three sets of system-elements.  SI does not need to 

master any of its elements‘ behavior in order to successfully execute; rather this mastery 

would influence the balance of the three elements.  Therefore, in this case, ‗master of 

none‘ is a positive concept and significantly desirable.  However, skillful mastery in SI 

requires the know-how to deal between and among its elements.  SI needs to know what 

and how to discern each element‘s behavior for trade-offs.  This skill just emphasizes SI 

is event-driven. 

‗Bottoms-Up, SI‘ 

Traditionally, SI is realized with a bottom-up approach starting at its lowest-level 

of abstraction and ending with the overall system solution.  The amount of SI efforts in 

the lower levels is at its maximum tapering down as the work rolls-up to the top. 

‗SI Divides and Conquers‘ 

Decomposing and aggregating the SI-elements together demonstrate SI‘s need for 

a top-down approach to successfully ‗conquer‘ its objectives. 

‗SI‘s Power of Suggestion‘ 

SI‘s power of suggestion makes its character obvious to most people.  As obvious 

as it may seem, SI suggests underlying requirements and repetitive cycles to master its 

execution. 

‗No SI-Element is an Island‘ 

Each SI-element cannot work alone to achieve an overall system solution.  
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Despite their own objectives, SI takes melding the objectives of all three elements to 

deliver an integrated system solution for mission utilization.  From the data analysis of 

this thesis, SI is characterized as ―people-driven, process-centered, and product-oriented‖ 

brought together to form an integrated ―people-process-product‖ entity. 

‗SI‘s Twin Brother SE‘ 

Despite SI‘s operative uniqueness, SE approaches are supportive of its successful 

application.  For instance, system engineering management supports program 

management‘s ultimate responsibility for the products of SE, for managing risk, and 

controlling the configuration of the products that make up the system.  It can be useful to 

consider SE as a cross-product process and the SE organization as a cross-product staff 

function serving program management.  The technical and engineering program aspects 

should be addressed as an integrated part of the SE process.  Successful integration of 

engineering and technical elements in acquisition programs is dependent upon 

substantive and proactive organizational processes.  Systems Engineering must be an 

integrated system capable of providing and sustaining the people, products, and processes 

necessary for the effective and efficient execution of the program objectives.  To achieve 

the stated objectives of systems engineering there must be a process for planning, 

directing, monitoring, and controlling all the engineering on a program.  This process is 

what we interpret as Systems Integration. 
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Investigative Questions Answered 

SI traceability performed using the GPS case study revealed that, given a 

moderate amount of program management artifacts, SI can be traced throughout the 

lifecycle of a standard DoD system acquisition.  By using the SI Traceability Matrix-

Model, a structured, linear, and repeatable methodology can be applied to any DoD 

system acquisition program in a manner that will reveal information about the program 

under review.  This information, when subjected to the Traceability Methodology 

developed in this thesis, will enable a knowledgeable DoD Systems Acquisition 

Professional, to formulate an assessment of a program‘s SI activities and characteristics 

as revealed by programmatic lessons learned.  Once this assessment is rendered, the 

appropriateness and adequacy of the program SI must be formulated by the individual(s) 

performing the SI analysis. 

In the thesis example of SI traceability analysis (i.e. GPS case study), it was 

clearly demonstrated that SI can be traced throughout the lifecycle of a DoD space-

system acquisition using standard DoD TR&A events.  Using this same SI traceability 

methodology, but with a greater degree of analysis, the level of program SI activity, 

efficacy of program SI, and performance of SI relative to program objectives, can also be 

derived. 

Summary 

By rigorously employing the methodology described in this thesis, it has been 

demonstrated that SI in a DoD Space-System Acquisition program can be traced and its 

performance can be measured. 
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Top-level SI-element complexity (e.g., the number of sub-elements associated 

with the SI Area) will render the SI traceability methodology seemingly 

incomprehensible.  However, by collecting, characterizing, grouping, and coding the 

words and phrases that link the applicable programmatic, technical and system concepts 

to the standard DoD Systems Acquisition Technical Reviews and Audits, it is possible to 

devolve these complexities into manageable parameters that can be reasonably managed.  

By extracting the SI-elements from lessons-learned and problem reports, their 

interrelationships with the other SI-elements can portray the amount of effort needed to 

consistently implement each process in the Traceability Methodology.  Complexity of 

other SI elements may depend upon such factors as the number of stakeholders, 

individual specialties, and amount of decision authority involved in the TR&A process.  

The analytical process of projecting three individual SI Area elements onto one TR&A 

events becomes exceedingly complex and subjective when too many contributing factors 

are involved.  As a consequence of the additive complexity factors that are inadvertently 

introduced into the Traceability Model, the authors of this thesis chose to take a simple 

and relaxed approach to data collection, reduction and interpretation. 

When data collection, reduction and analysis resulted in the high tally of the SI 

Area elements associated with TR&A events, a quantitative measure of SI activity for a 

DoD Systems Acquisition program that is under review could be compared to a standard 

and a measure of the program SI performance could then be assessed.  The characteristics 

of SI are revealed by lessons learned from various space-system programs and proved to 

be relatively consistent between programs and systems. 
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A significant realization that each SI-element could not function alone to achieve 

an overall system solution was revealed during the course of this thesis.  Despite the 

individual objectives of each SI Area, SI requires the melding the objectives of all three 

areas, their intersections and unions, to deliver an integrated system solution for program 

success. 
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V.  Conclusions and Recommendations 

This chapter summarizes the research in characterizing SI and tracing its value 

along the TR&A timing in the Space System Acquisition framework.  Descriptions 

include the thesis‘ contribution to the theory and practice of SI, its research limitations, 

recommendations for action, and suggestions for future research.  The chapter ends this 

composition with conclusions that can be drawn from its research. 

Contributions of Research 

This thesis explored the subject of Systems Integration as applied to the Space-

Systems Acquisition process.  Despite the unsupported literature review on this subject 

area, this thesis created two new models.  The first model proposed a three SI-element 

construct of seven SI-areas that served as the foundation of the second model.  The 

second one was created to trace SI within the Space-System Acquisition framework.  It 

served as a measurement tool for this research and was partially validated with one case 

study. 

Characterizing SI through lessons-learned and tracing these characteristics within 

a framework cracked opened a little more the door of integration knowledge.  Although 

not part of the plan, the research also brought about some ways to measure SI.   The 

following paragraphs briefly discuss the more important contributions to the theory and 

practice of SI in the Space Systems Acquisition framework. 

Prior to this research, there were little specific and disparate information on SI.  

The findings show that SI is vaguely defined and difficult to articulate although desirable 

for a number of reasons. 
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The data collection and analysis strongly supported the view that SI is multi-level 

and multi-dimensional with three elements combined into seven areas. The evidence 

supports the definition of SI as ―the work of many people from different functional 

disciplines, working on different system component products, in different process steps 

over time‖ (21:42). 

Several ideas were found that might allow further discoveries of measuring SI 

leading to new functions for program estimation. 

Initial efforts have been taken towards developing a tool that assigns value to SI.  

The ability to trace SI in the acquisition framework permits the assignment of values to 

SI-area.  By establishing the links between and among these SI-elements may provide the 

ability to establish cost benefits of SI. 

Finally, this research‘s confinement to the context of space-system infrastructure 

should not deter the application of the many same concepts to other types of 

infrastructure.  Ultimately, the idea that SI construct can be universally applied will likely 

be confirmed. 

Limitations of Research 

As far as the authors‘ efforts to finding similar approaches, this research is the 

first to characterize and trace SI in the Space Systems Acquisition framework.  However, 

the reader is informed of the several limitations of this research as describe in the 

following: 

 Being the first in this type of study requires additional research to confirm the 

results. 
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 Additional case studies are needed to fully validate the research models. 

 Need to validate concept coding to confirm the research‘s findings. 

 This research is not as strongly grounded as usual due to lack of specific 

literature. 

 Lack of universal SI measurements limited stronger relationships between and 

among the people, process and product elements. 

Recommendations for Future Research 

Additional exploration is needed for this course of research.  There are a variety 

of opportunities to widen the door of SI.  Some specific ideas are: 

(1)  Create a portfolio of measurements to estimate the value of SI in space-

system acquisition programs. 

(2) Utilize this research‘s models to assure SI is employed within the program‘s 

objectives and scope. 

(3) Find the downsides of SI to establish guidelines for SoS program decisions. 

(4) Investigate differences of perceptions about SI from both the government and 

industry. 
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Conclusions 

The subject area of Systems Integration is ample and intricate.  SI appears to be 

hierarchical in nature and multi-dimensional consisting of three elements combined into 

seven areas.  Evidence suggests that SI is being pursued by many space-system programs 

based on its obvious definition of ―working together‖ and without any means to ascertain 

its value. 

This research has discovered some of the theoretical issues of SI.  Although not 

encompassing, this course of research encourages SI practitioners to look at it with more 

actual ideas.  This additional knowledge provides practitioners and researchers alike with 

greater leverage to make more intelligent and informed decisions.  

Despite the efforts of characterizing SI and tracing its value within the Space 

Systems Acquisition framework, it still remains to be seen the articulation and 

standardization of this phenomenon.  Logically, this lack of common language should 

stifle SI‘s great potential value to succeed, however, practitioner‘s heavy reliance on their 

intuition and judgment for SI decisions seem to have served remarkably well. 
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Appendix A: Collection of the Lesson-Learned Statements 

1 Honeycomb Structures Should be Vented to Reduce Delamination Risk 

 Honeycomb structures for space systems should be designed vented whenever possible. 
C   Product–Product: honeycomb structure – space system 
E   Product–Process: honeycomb structure – design 

 The vast majority of spacecraft or launch vehicles using unvented honeycomb structures, and these have not failed in space 
operations. 
C   Product–Product: honeycomb structure – spacecraft, launch vehicle 
E   Product–Process:  honeycomb structure – space operations 

 If an unvented design cannot be avoided (e.g., to avoid contamination), it is necessary to adopt extensive development, 
verification, and quality assurance, including proof tests under applicable temperature and vacuum conditions. 
B   Process–Process: design – development, verification, QA, test 
E   Process–Product: design – temperature, vacuum (requirements) 

 Perforating honeycomb cells relieves pressure during launch. 
E   Product–Process: honeycomb cells – launch 

 
2 Perform Independent Mass Property, Stability Control, and Structural Load Analyses on Spacecraft and Launch Vehicles 

 Engineer’s inaccurate modeling on mass property, stability control, and structural loads continue to threaten mission 
performance. 
G   People - Process - Product: engineer – modeling – mass property, stability control, structural loads 
B   Process–Process: modeling – mission 

 Many programs require an independent analysis to ensure correct modeling. 
D   People–Process: program – analysis 
B   Process–Process: analysis – modeling 

 Independent analyses also help validate operational procedures and support flight anomaly resolution. 
B   Process–Process: analyses – validate – support – resolution 
E   Process–Product: validate – procedures 

 Independent analysis is often necessary to overcome each organization having little insight into each other’s analytical process. 
D   Process–People: analysis – organization 
A   People–People: organization – other 

 Integrating space vehicle (SV) to launch vehicle (LV) involves complex modeling. 
C   Product–Product: space vehicle – launch vehicle 
E   Product–Process: space vehicle, launch vehicle – modeling 

 Costing problems can easily arise without a clear settling of organizational responsibility, especially with today's emphasis on 
proprietary data protection. 
G   People - Process - Product: organization – cost – proprietary data 

 
3 Rigorously Manage and Test Software, Including the Database 

 Multiple deficiencies in the software development, testing, and quality assurance (QA) processes allowed a single–Point failure 
escape during satellite operations. 
E   Product–Process: software – development, testing, QA 
B   Process–Process: development, testing, QA – satellite operations 

 One must test actual flight hardware and software. 
G   People - Process - Product: one – test – hardware and software 
E   Process–Product: test – hardware and software 
C   Product–Product: hardware – software 

 Due to a lack of overall software ownership, independent validation and verification was not done on the as–flown constant. 
G   People - Process - Product: Ownership – verification and validation – constant 
A   People–People: overall – independent 

 The integrity of software databases is no less critical than the source codes. 
C   Product–Product: databases – source code 

 The space business is extremely complex and human error cannot be completely eliminated. 
A   People–People: space business – human error 

 The system must be designed robust enough to catch the inevitable faults. 
E   Product–Process: system – design 

 The wrongly placed decimal point caused the middle line display to become flat. 
C   Product–Product: decimal point – display 

 Satellite operator failed to read the flagged anomaly on display during launch. 
G   People - Process - Product: Satellite Operator – Launch – display 
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4 Document Engineering Requirements As Clearly As Possible 

 Engineers must clearly articulate their intentions and determine how the requirements should be interpreted or could be 
misconstrued. 
G   People - Process - Product: Engineers – determine – requirements 

 Builders making seemingly minor (Category II) changes can misconstrue their interpretation of unarticulated requirements. 
G   People - Process - Product: builders – changes – requirements 

 QA was led to pass joints with low brazing coverage due to missing "per linear inch" phrase in the requirements. 
E   Process–Product: QA – requirement 

 The work instruction for assembling joints stated that the wrapping should be applied "within 0.5 inches of the mounting 
bracket flange" (instead of saying, e.g., no closer than 0.5 inches) caused to breach combustion chamber during flight 
operations. 
C   Product–Product: instruction – chamber 
E   Product–Process: chamber – flight operations 

 The technicians, not knowing that the parts were to unfasten, built by taping the joints as closely to the flange as possible, 
making separation impossible (breached) during flight operations. 
G   People - Process - Product: Technicians – built – joints and flange 
C   Product–Product: joints – flange 
E   Product–Process: joints and flange – flight operations 

 
5 Avoid Pure Tin Plating 

 Prohibit design of pure tin plating in both flight hardware and ground equipment. 
E   Process–Product: design – flight hardware and ground equipment 
C   Product–Product: flight hardware – ground equipment 

 Buyers ensure prime contractors flow down unambiguous plating requirements and perform appropriate receiving inspections. 
A   People–People: buyers – prime contractors 
G   People - Process - Product: prime contractors – flow down – requirements 
B   Process–Process: flow down – inspections 

 Requirement planners appropriately store & handle (i.e. purge) prohibited tin materials (paying particular attention to the 
"commercial parts") from project stores and standard catalog items. 
G   People - Process - Product: Planners – storage & handling – commercial parts 
C   Product–Product: commercial parts – project stores, catalog items 

 PM review subcontractor designs and part specifications to confirm safety of parts. 
A   People–People: PM – subcontractor 
G   People - Process - Product: PM – review – specifications 
E   Product–Process: parts – safety 

 Apply conformal coatings on all exposed conducting surfaces wherever possible to inhibit shorts and vacuum arcing during 
test. 
E   Process–Product: coatings – surfaces 
B   Process–Process: coatings – test 

 
6 Following a Major Repair, Watch Out for Secondary Damage 

 Ad–hoc repair processes tend to be much less defined and qualified than regular manufacturing operations. 
B   Process–Process: repair – manufacturing 

 Material Review Board (MRB) should review possible secondary damage from repaired rocket and should be added to the 
readiness review process. 
G   People - Process - Product: MRB – repair review – rocket 
B   Process–Process: repair review – readiness review 

 Repair patching of deep cut on rocket segment allowed flame to burn through the case. 
E   Process–Product: Repair – rocket 
C   Product–Product: rocket – case 

 
7 Perform High–Fidelity System Validation Tests for Pyrotechnics 

 Pyros (explosive devices) by themselves are very reliable, but the adjacent systems must be designed to withstand (i.e. test) the 
mechanical or electrical shocks generated by the pyros. 
C   Product–Product: pyros – systems 
B   Process–Process: design – test 
E   Product–Process: pyros – design, test 

 Tests should simulate flight configuration and functional performance. 
B   Process–Process: test – simulate – configuration 
E   Process–Product: test – simulate – configuration – flight performance 

 Post–test examinations of qualification or acceptance specimens should look for signs of inferred margin or incipient failure 
modes. 
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B   Process–Process: post–test – qualification or acceptance 
E   Process–Product: post–test – margins and failure modes 

 
8 Solar Arrays Must Withstand Extreme Environments 

 Solar array parts should be carefully designed from being damaged by the hostile space environment. 
C   Product–Product: Solar array – parts 
E   Process–Product: design – solar array 
B   Process–Process: design – space environment 

 Satellites must be robustly designed to withstand the extremes of space weather as well as other space hazards. 
B   Process–Process: design – space weather 
E   Process–Product: design – satellite 

 Insufficient stress relief and insulation caused abrasion of wiring harness. 
C   Product–Product: stress relief and insulation – wiring harness 

 
9 Excessive Handling Can Destroy Solid Lubricant 

 Operation, testing, or storage of mechanisms under non–vacuum conditions must be performed with caution when MoS2 dry 
lubricant is involved. 
B   Process–Process: operation – testing – storage 
E   Process–Product: operation, testing or storage – lubricant, conditions 

 Follow Aerospace's handling and storage guidelines to safeguard lubricants. 
G   People - Process - Product: Aerospace – handling and storage – lubricants 

 High gain antenna unfurls like an umbrella due to excessive friction during deployment developed between the pin and the 
socket due to loss of lubricant. 
C   Product–Product: antenna – pin – socket – lubricant 
E   Product–Process: antenna – deployment 

 The motor could not overcome the friction due to lack of lubricant and stalled during deployment causing the antenna to not 
open. 
C   Product–Product: motor – lubricant – antenna 
E   Process–Product: deployment – antenna 

 
10 Design Satellites to Withstand Space Weather, Regardless of Solar Cycles 

 Spacecraft must be designed to withstand worst–case space environments as a matter of course. 
E   Product–Process: spacecraft – design 
B   Process–Process: design – space environment 

 Satellites should be hardened against electro–static discharge (ESD), using well–established design guide–lines on structure, 
materials, shielding, cable interfaces, and circuits. 
E   Process–Product: design – satellites, ESD 
C   Product–Product: structure – materials – shielding – cable – circuits 

 
11 Carefully Evaluate Satellite–Launcher Interface 

 Cables and connectors must be designed to withstand vibration–induced stresses between systems during test and operations. 
C   Product–Product: cables – connectors – systems 
E   Product–Process: cables, connectors, system, stress – design, test 
B   Process–Process: design – test – operations 

 Margins must be reserved both in dynamic input estimation and in design. 
E   Product–Process: margins – estimation, design 
B   Process–Process: estimation – design 

 The interfaces among different organizations, particularly between the spacecraft side and the launcher side, frequently lead to 
problems. Independent analysis is advised to overcome organizational barriers. 
A   People–People: spacecraft side – launcher side 
D   Process–People: analysis – organization 

 The booster, while being carried by the launching airplane, vibrated at 40–50 Hz. In several previous flights, shaking went 
beyond the level spelled out in the Interface Control Document (ICD). As a result, the rocket contractor reduced the airplane's 
speed to minimize this problem. Still, vibration in this flight was double the specification. 
C   Product–Product: Booster – airplane; vibration – specification 
E   Process–Product: flight – ICD 
G   People - Process - Product: contractor – reduce – speed 

 The satellite exhibited a structural resonance at 40 Hz. During factory test, this resonance amplified an acceleration input six–
fold. 
C   Product–Product: satellite – resonance 
E   Process–Product: test – resonance 

 The satellite contractor conducted the vibration acceptance test at a lower level than the ICD specification. A defect in the 
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electronics or harness probably went undetected in the test, but propagated under a combination of excessive in–flight 
vibration and resonance to cause the failure. 
G   People - Process - Product: contractor – test – ICD 
E   Product–Process: electronics – test 
C   Product–Product: electronics – harness – vibration and resonance 

 Vibrational forces, expressed as power spectral density (PSD) in log scale imparted on the spacecraft by the carrier airplane, 
and as satellite's response toward an even level of excitation. Spacecraft resonated at the frequency where above–spec 
shaking took place during flight. 
C   Product–Product: vibrations – spacecraft – carrier 
E   Process–Product: flight – frequency, satellite, carrier 

 Both the launcher and the satellite prime contractors recognized the vibration issue and proposed to conduct a coupled–loads 
analysis. It was not performed because the program office, which served as the overall systems integrator, lacked funding. 
A   People–People: launcher contractor – satellite contractor – program office – systems integrator 
F   People–Product: contractors – vibration 
E   Process–Product: analysis – vibration 
G   People - Process - Product: systems integrator – funding, analysis – vibration 
C   Product–Product: satellite – launcher 

 
12 One Requirement, One Statement 

 Do not lump several requirements together—write them out separately so that each can be tracked individually. Negative 
statements (e.g., “Sampling shall not begin until…”) may cause misunderstanding and should be avoided. 
C   Product–Product: requirement – requirement 
E   Process–Product: track – requirement 

 Systems engineers must take ownership of requirements and partition (i.e. flow down) them to the appropriate subsystem. 
Whether or not a requirement is the software’s responsibility, for example, should not be left to the discretion of the software 
team. 
G   People - Process - Product: system engineers – flow down – requirements 
C   Product–Product: requirement – subsystem – software 
A   People–People: system engineers – software team 

 Systems engineering must ensure thorough end–to–end failure mode testing. 
G   People - Process - Product: systems engineer – testing – failure mode 

 The software review process should emphasize logic flow. Tests should exercise every requirement to see if there are 
conditions that could cause the software to fail. 
B   Process–Process: review – logic flow 
E   Process–Product: test – requirement; review – software 
C   Product–Product: requirement – software 

 Test planning needs to consider requirements for transients or spurious signals. 
E   Process–Product: test – requirement 

 When important tests are aborted or are known to be flawed, they must be rerun after the errors are fixed. Repeat the test if 
any software or hardware involved are changed. 
B   Process–Process: test – fix – rerun 
E   Process–Product: test – software or hardware 
C   Product–Product: software – hardware 

 
13 Flexible Solar Arrays Are Susceptible to Thermally Induced Vibrations 

 Flexible solar arrays and supporting equipment are sensitive to thermal environment. 
C   Product–Product: solar arrays, equipment – thermal environment 
E   Process–Product: support – solar arrays 

 Thorough thermo–mechanical analyses of the solar arrays, particularly on their modal frequencies, should be conducted. 
E   Process–Product: analyses – solar arrays – frequencies 
C   Product–Product: solar arrays – frequencies 

 Control algorithms used to mitigate the effects of solar–array excitations should be refined. 
C   Product–Product: algorithm – solar arrays 
E   Process–Product: mitigate – excitations 

 Long appendages can deform and cause the spacecraft to shiver during eclipse transitions. 
C   Product–Product: appendages – spacecraft 
E   Product–Process: spacecraft – transitions 

 Effective attitude control algorithms should be developed to analyze shivering of spacecraft during eclipse transitions. 
C   Product–Product: algorithm – spacecraft 
E   Process–Product: develop, analyze – algorithm 
B   Process–Process: develop – analyze – transitions 
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14 Look Beyond Specifications in Qualifying Materials by Similarity 

 Substitute materials should be tested under conditions that realistically simulate flight conditions and give results comparable 
to those exhibited by the original material. 
E   Product–Process: materials – test 
B   Process–Process: test – simulate – flight 

 The replacement material outgassed and delaminated during firing. This problem escaped qualification since slow heating 
rates (0.1–deg F/sec) used in the lab test provided time for the gas to escape. Faster rates would have revealed the issue. 
E   Product–Process: material – replace, firing; rate – test 
B   Process–Process: replace – qualification – test – firing 

 A supplier problem prompted the contractor to select a replacement resin for the nozzle skirt. 
A   People–People: supplier – contractor 
G   People - Process - Product: contractor – replace – resin 
C   Product–Product: resin – nozzle skirt 

 A rocket nozzle failed during test firing because a replacement insulator delaminated. 
E   Product–Process: nozzle – test 
C   Product–Product: insulator – nozzle 

 The propulsion valves in a rocket broke down just before launch because the oxidizer reacted with a new cleaning solvent. 
C   Product–Product: valves – rocket 
E   Product–Process: solvent – cleaning 
B   Process–Process: cleaning – launch 

 A solar array would not deploy in space because radiation caused a rubber spacer to become sticky. 
C   Product–Product: solar array – rubber spacer 
E   Product–Process: radiation – deploy 

 
15 Avoid Separable Flared Fittings 

 Separable fittings in fluid lines should be avoided wherever practical in favor of building permanent connections such as 
welded or brazed joints. 
C   Product–Product: fittings – fluid lines – joints 
E   Product–Process: fittings – weld, braze 
B   Process–Process: avoid – weld, braze 

 Where separable connectors must be used, the fittings should have machined sleeves or redundant sealing surfaces. All 
separable connectors should be readily designed accessible at all stages of building and at the launch site to allow torque 
checks and repairs. 
C   Product–Product: fittings – sleeves – surfaces – connectors – torque* 
E   Product–Process: connectors – design 
B   Process–Process: design – building – checks – repairs – launch 

 All separable fittings should be torque–checked as close to launch as possible. If torque checks are not possible within 10 days 
prior to launch, locking devices that do not cause contamination should be used. 
E   Product–Process: fittings, torque* – check, launch 
C   Product–Product: fittings – devices 
B   Process–Process: check – launch 

 The flared–fitting seal relies on maintaining the required clamping force high enough to deform the flare into a fit on the 
threaded elements during flight. 
C   Product–Product: seal – force* – flare – thread 
E   Product–Process: seal – flight 
B   Process–Process: maintain – flight 

 
16 Systematically Monitor and Control Contamination 

 Engineers should review the importance of contamination–control engineering during every phase of development and 
hardware design. 
G   People - Process - Product: Engineers – review – contamination* 
B   Process–Process: review – control – development 
E   Process–Product: design – hardware 
C   Product–Product: hardware – contamination* 

 Perform contamination budget analysis, using tools derived from experimental data. 
B   Process–Process: budget – analysis 
E   Process–Product: analysis – data 
C   Product–Product: tools – data 

 Establish quantitative cleanliness requirements and apply cutting–edge processes to control particulate and molecular 
contamination. 
E   Process–Product: control – contamination* 

 Contamination of radiators makes electronics run hotter. 
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C   Product–Product: contamination* – radiators – electronics 
 
17 Watch Out for the Return of Leonid Micrometeoroid Storms 

 Engineers and Satellite Operators should be trained on the space environment situation is vital. 
A   People–People: engineers – satellite operators 
G   People - Process - Product: Engineers, Satellite operators – train – space environment 

 Satellite operators should advance planning in anticipation of the coming storms is essential. 
G   People - Process - Product: satellite operators – planning – storms 

 Satellite operators turning telescopes away from incoming particles, adjusting solar panels, and orienting the satellite to face 
the micrometeoroids at an oblique angle minimize damage to internal hardware. 
G   People - Process - Product: satellite operators – damage – hardware 
C   Product–Product: telescopes, solar panels, satellite – particles 
B   Process–Process: orienting – damage 
E   Process–Product: orienting – satellite 

 Satellite operators review procedures for rebooting subsystems. 
G   People - Process - Product: satellite operators – review – procedures* 
E   Process–Product: rebooting – subsystems 
C   Product–Product: procedures* – subsystems 

 Making sure experienced personnel are operating during the storm. 
G   People - Process - Product: personnel – operating – storm* 

 Satellite operators turn off equipment that are sensitive to electrostatic discharge (ESD), and avoid commanding the satellite or 
firing thrusters during storms. 
G   People - Process - Product: satellite operators – turn off – equipment 
B   Process–Process: turn off – avoid 
C   Product–Product: ESD* – satellite, thrusters 
E   Process–Product: avoid – storms* 

 
18 Make Sure Critical Software Performs in its Intended Environment 

 Hardware redundancy does not necessarily protect against software faults. 
C   Product–Product: hardware – software 
B   Process–Process: redundancy – protect 
E   Process–Product: redundancy – hardware 

 Mission–critical software failures should be included in system reliability and fault analysis. 
C   Product–Product: software – system 
E   Product–Process: software – reliability, fault analysis 
B   Process–Process: reliability – fault analysis 

 Software specifications should always include specific operational scenarios. 
C   Product–Product: software – specification* 
E   Product–Process: specification* – operation 

 Software reuse should be thoroughly analyzed to ensure suitability in a new environment, and all associated documentation, 
especially assumptions, should be reexamined. 
C   Product–Product: software – documentation* 
E   Product–Process: software – reuse 
B   Process–Process: reuse – suitability, re–examine 

 Extensive testing should be performed at every level, from unit through system test, using realistic operational and exception 
scenarios. 
B   Process–Process: testing – operation 
C   Product–Product: unit – system 
E   Process–Product: testing – unit 

 As software takes over many functions that used to be controlled by hardware, code sizes increase almost exponentially. 
C   Product–Product: software – hardware; software – code 

 Software reliability thus poses a growing challenge and warrants more quality assurance efforts. 
E   Product–Process: software – reliability 
B   Process–Process: reliability – quality assurance 

 
19 Be Sure that the Architecture Isolates Faults 

 Create and use a verification matrix for all levels of test requirements. 
E   Product–Process: requirements – verification 

 Inspect all test data for trends, oddities, and out–of–family values, even when all values are within expectation. 
E   Product–Process: data – inspect 
B   Process–Process: inspect – trend 

 Evaluate all indicators for potential impacts, should trends continue. Seek to explain all instances of anomalous data. 
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E   Process–Product: evaluate – data 
B   Process–Process: evaluate – trend 

 Incorporate flight software into test at the earliest opportunity. 
E   Product–Process: software – test 

 Avoid sneak failure paths by keeping circuit designs straightforward. 
C   Product–Product: failure paths – circuit 
E   Product–Process: circuit – design 
B   Process–Process: avoid – design 

 Use isolation resistors or downstream fuses to prevent a grounded component from bringing down the entire system. 
C   Product–Product: resistors, fuses – component, system 

 
20 Thoroughly Analyze and Test Deployables 

 Make sure the design can be effectively tested. 
B   Process–Process: design – test 

 Avoid unconventional designs, especially those involving complex motions. 
E   Process–Product:  design – motions* 

 Deployable design should not be so complex that it cannot be verified on the ground. 
B   Process–Process: design – verified 

 The deployment scheme in the satellite was too complex to be tested, and The Aerospace Corporation had to run an in–depth 
analysis to verify it. 
B   Process–Process: analysis – test – deployment 
G   People - Process - Product: Aerospace – analysis – satellite 
E   Product–Process: satellite – deployment 

 Although the deployment proved successful in space, the contractor learned a lesson and decided to revert to simpler schemes 
in the future. 
B   Process–Process: deployment – scheme 
G   People - Process - Product: contractor – scheme – space* 

 
21 Prevent Loss of Lubricating Oil and Grease During Storage and Test 

 Use enough oil to sustain storage and operation needs. 
E   Product–Process: oil – storage, operation 
B   Process–Process: storage – operation 

 If porous hardware requires lubrication, they should be thoroughly cleaned, protected from moisture, and stored in oil. 
C   Product–Product: hardware – lubrication* – moisture* – oil 
E   Product–Process: hardware – store 
B   Process–Process: clean – protect – store 

 Test high–speed moving parts in an inert environment to prevent oxidation. 
E   Process–Product: test – parts 
C   Product–Product: parts – oxidation* 

 Perform materials compatibility analysis to avert chemical reactions. 
E   Product–Process: materials – analysis 
C   Product–Product: materials – reactions* 

 Check NASA Mechanisms Handbook (NASA/TP–1999–206988) for guidelines on mechanical assemblies. 
F   People–Product: NASA – assemblies 

 The spin axes of gyros and wheels should be oriented during storage in such a way as to ensure oil retention. 
C   Product–Product: axes – gyros – wheels – oil 
E   Product–Process: wheels – storage 
B   Process–Process: storage – retention 

 Minimize oil evaporation and migration during hardware storage. 
C   Product–Product: oil – hardware 
E   Product–Process: oil – storage 
 

22 Be Aware of Challenges in Silver/Zinc Battery Manufacturing and Deployment 

 Design, documentation, manufacturing, storage, and field application of batteries require constant vigilance. 
B   Process–Process: design, document, manufacturing, storage, field 
E   Product–Process: batteries – design, document, manufacturing, storage, field 

 Materials must be thoroughly screened before being incorporated in batteries. 
E   Product–Process: materials – screened 
C   Product–Product: materials – batteries 

 Batteries consist of numerous cells, each containing a silver electrode and a zinc electrode. One of the most common battery 
problems pertains to the plastic separators that wrap around the silver electrodes. 
C   Product–Product: batteries – cells – electrode – separators 
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 Minor changes in the constituents of these items have led to incompatibility problems with the electrolytes, causing excessive 
shrinkage or chemical reactions. 
E   Product–Process: electrolytes – changes 
C   Product–Product: electrolytes – reactions* 

 
23 Make Sure Requirements Are Developed Correctly 

 Formalize requirement development process and capture lessons. 
E   Product–Process: requirement* – development 

 Provide adequate design margins and operational flexibility, such as the ability to use software patches. 
E   Process–Product: design, operations – software patches 
B   Process–Process: design – operations 

 Make sure that the hardware or software which a contractor wants to reuse from another program is indeed applicable and 
has a satisfactory flight history. Do not be deterred by the excuse that details are not available because the previous program 
had proprietary data or classified—there are always ways to get around that hurdle. 
A   People–People: contractor – program 
G   People - Process - Product: contractor – reuse – hardware or software 
C   Product–Product: hardware – software 
F   People–Product: contractor – proprietary data 

 Most of the project’s costing of performance is established by front–end decisions, but mistakes made there are difficult to 
catch. 
G   People - Process - Product: decision – costing – performance* 

 More resources, including the most experienced personnel, should be made available to ensure the early decisions are made 
properly. 
A   People–People: resources – personnel – decision  
D   People–Process: resources, personnel, decision – avail 

 Designers should thoroughly review the history of similar projects. If the probe designers had analyzed the requirements of 
other deep space projects, both the importance of the Doppler Shift and the correct way to perform end–to–end test would 
have become obvious. 
C   Product–Product: probe – Doppler Shift* 
G   People - Process - Product: Designers – review, analyze – requirements 
E   Product–Process: Doppler Shift* – end–to–end test 

 
24 Safeguard Hardware Against Inadvertent Overtesting 

 Make sure that test facilities are maintained and checked. 
E   Product–Process: facilities* – maintain, check 

 Implement over–test protection (such as over–temperature tripping circuits in thermal chambers). 
C   Product–Product: thermal* – circuits 
E   Product–Process: circuits – test 

 Take risks of over–testing during vibration tests into account. In particular, large satellites should typically be acoustically 
tested instead of vibration–tested to prevent damage. 
C   Product–Product: vibration*, acoustic* – satellite 
E   Process–Product: test – vibration*, acoustic* 

 Step up vibration tests from one–third to one–half of the full level so that the required force can be more accurately computed. 
E   Process–Product: test – vibration*, force* 
C   Product–Product: vibration* – force* 

 Test procedures, set up, and data should be thoroughly checked to account for operator mistakes and avoid damage. 
G   People - Process - Product: operator – check – data 

 Friction during start–up can greatly exceed that during operation. This problem, known as stiction, frequently causes trouble. 
For example, when a tape drive is adjusted, the tape may not move until enough voltage to overcome the stiction is applied; 
but then the force is too large, and the tape suddenly runs wild. 
C   Product–Product: friction*, voltage* – tape drive 
E   Product–Process: tape drive – stiction 

 
25 Thoroughly Verify All Software Changes 

 A small software error can have catastrophic mission impacts. 
E   Product–Process: software – mission 

 Software change processes require the same degree of rigor as the original development. Each change and associated rationale 
must be individually approved. 
G   People - Process - Product: approved – change – software 
B   Process–Process: change – development 

 Retest and regression testing should be formal and thorough. All logic paths affected by changes must be verified, and all 
results must be checked. 
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E   Process–Product: change – logic path 
B   Process–Process: change – verified – test 

 Operational status, particularly off–nominal indicators, must be displayed effectively. 
E   Product–Process: indicators* – operation 

 
26 Make Sure Hardware Analyzed Is Hardware Actually Built 

 Designers should be called back to inspect the products, to see if there are major differences between analysis and 
implementation. 
G   People - Process - Product: Designers – inspect – products 
B   Process–Process: analysis – implementation 

 Modeling mistakes are not easily caught. Analysis does not negate testing. 
B   Process–Process: modeling – analysis – testing 

 Do not cut corners on modeling or testing. 
B   Process–Process: modeling – testing 

 Programs should insist that the analysts document their methodology and assumptions, and compare them against the actual 
hardware so that errors may be found. 
G   People - Process - Product: analysts – document – hardware 
A   People–People: programs – analysts 

 Do not rely on heritage designs until their flight experiences are thoroughly understood. 
D   People–Process: experiences – design 

 Cells near the harness became hotter and degraded first. 
C   Product–Product: cells – harness 

 
27 Control Propellant Balance 

 Make sure tank loads are balanced. 
E   Product–Process: loads – balanced 

 Use a single tank, if feasible, to avoid propellant migration. 
C   Product–Product: tank – propellant 
E   Product–Process: propellant – migration 

 Ensure that attitude–control algorithms and mechanisms can correct dynamic instability caused by propellant imbalance. 
C   Product–Product: instability* – algorithms – mechanisms – propellant 

 If possible, place a gas pressure regulator above the tanks, or latching isolation valves below each tank, to control propellant 
flow. As satellites spin during transfer maneuvers, mass imbalances coupled with centrifugal forces can cause tilting. Severe tilt 
can divert the transfer thrust and prevent satellites from reaching their proper orbit. 
C   Product–Product: regulator, tanks, valves, propellant, satellites, orbit 
E   Process–Product: place – regulator 
B   Process–Process: place – maneuvers 

 Feedback loops can be designed to control gas pressure or fuel flow between the tanks to restore balance. The latter method 
is more precise. 
E   Product–Process: loops – design 
C   Product–Product: gas – tanks 

 
28 Graphite/Epoxy Structures Are Easily Damaged by Processing Changes and Handling Mishaps 

 Protect graphite/epoxy pressure vessels from handling damages. 
E   Product–Process: vessels – handling 

 Insist on safety margins and quality inspections for composite structures. 
E   Product–Process: structures – safety, inspections 

 Perform extensive requalification and acceptance tests to guard against subtle processing changes. 
B   Process–Process: requalification – tests – changes 

 In addition to graphite epoxy, Kevlar epoxy structures are also easily damaged. 
E   Product–Process: structures – epoxy 
B   Process–Process: epoxy – damage 

 In both cases, external impact usually leads to damage on the inside and can be difficult to detect. 
B   Process–Process: damage – detect 

 
29 Validate Changes in Command Script Configuration 

 Treat command–Procedure changes with the same rigor as flight–critical software. This includes formal configuration 
management, peer review with knowledgeable technical personnel and full command verification with an up–to–date 
simulator. 
C   Product–Product: software – simulator 
G   People – Process - Product: personnel – changes, CM, review, verification – software 

 Ensure change implementation timelines are consistent with staff workloads. 
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D   People–Process: staff – change 

 Display spacecraft health and safety information clearly. 
E   Product–Process: spacecraft – health, safety 

 Follow validated operations procedures, including review of all pertinent data. 
C   Product–Product: data – procedures* 
E   Process–Product: validate, review, operations – data, procedures* 
B   Process–Process: validate – review – operations 

 
30 Maximize On–board Reprogrammability to Enable Fault Recovery 

 Design into the satellite the flexibility to handle unforeseen emergencies, and provide emergency reset capability for major 
components. 
E   Process–Product: design – satellite 
B   Process–Process: design – handle 
C   Product–Product: satellite – components 

 Add emergency protection of a satellite battery system, such as low–battery–voltage cutout of nonessential loads. 
E   Process–Product: add – protection* 
C   Product–Product: satellite – battery – loads 

 The fuel tank had to be warmed up before pipes and thrusters were, lest overpressure burst the lines. Software changes 
allowed the battery to discharge current like a thermistor and turn on selective heaters whenever power became available. 
Because the flight computer was off during battery charging, the software patch had to be reloaded each time. After fine–
tuning, controllers managed to thaw the tanks with 48 heaters, using a peak power of over 500 watts! 
C   Product–Product: tank – pipes – thrusters; software – battery; thermistor – heaters; computer – battery; controllers – tanks 
– heaters 
E   Process–Product: change – software 

 
31 Oxidation Can Cause Erratic Open Circuits In Solid State Devices 

 Protect sensitive metal layers from oxidation (caused by over–etching, for example) during semiconductor fabrication. 
E   Product–Process: metal – fabrication 
C   Product–Product: metal – semiconductor 

 Use current–voltage profiles as a diagnostic tool—nonlinear high resistance usually indicates oxidation. 
B   Process–Process: diagnostic – profiles 

 An applied voltage can sometimes heal the chips temporarily by pushing the oxide layer aside. 
C   Product–Product: voltage – layer 

 Incomplete coverage of the gold via by the trace exposed the titanium layer to inadvertent oxidation. 
C   Product–Product: gold – titanium 

 
32 One Operation, One Verification 

 Implement a discrete verification step for each critical task. 
B   Process–Process: verification – task 

 Avoid multiple tasks within a procedure. 
B   Process–Process: avoid – task 
E   Process–Product: task – procedure* 

 Ensure a fail–safe process by applying software technology, self–checking indicators, or positive feedback mechanisms to 
complex operations vulnerable to human errors. 
E   Process–Product: fail–safe – software 
G   People – Process - Product: human – operations – software 

 Document each near miss and correct its root cause. 
B   Process–Process: document – root cause 

 The precision regulator in a booster engine control system used a stem screw to modulate gas inlet. A set screw forced a nylon 
plug against the stem screw threads and prevented the stem from rotating. The regulator was reworked to repair leakage 
during build. The rework instruction did not explicitly require set screw re–torquing and verification. The loose set screw caused 
the stem screw to unseat. The launch failed. 
C   Product–Product: regulator – booster engine; screw – gas inlet; plug – threads 
E   Product–Process: regulator – repair; instruction – rework 
B   Process–Process: repair – verification – launch 

 
33 Check Satellite–Launcher Compatibility As Early As Possible 

 Ensure interface problems between the satellite and launcher, such as dynamic instability, are analyzed early on in the design 
process. 
C   Product–Product: satellite – launcher 
E   Product–Process: instability* – design 

 Solid upper stages, which are used in a mission, are more prone to instability. 
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E   Process–Product: stages – instability* 
B   Process–Process: stages – mission 

 The satellite contractor did not recognize this risk in part because the launch vehicle contractor failed to formally communicate 
this requirement. 
A   People–People: satellite contractor – launch vehicle contractor 
G   People - Process - Product: contractors – communicate – requirement 
C   Product–Product: satellite – launch vehicle 

 The design changes kept the instability in check during flight, and the satellite reached the correct orbit. 
E   Process–Product: design – instability* 
C   Product–Product: instability* – satellite 
B   Process–Process: design – changes – flight 
 

34 Safeguard Hardware Against Inadvertent Overtesting (II) 

 Implement over–test protection. 
E   Process–Product: test – protection* 

 Correct the root cause of operational mistakes. 
D   People–Process: mistakes – root cause 
B   Process–Process: correct – root cause 

 Incorporate visual guides or overlays as part of process control procedures. 
E   Product–Process: overlays – control 

 
35 Implement Independent Fault Protection 

 Apply independent fault protection for critical software functions. 
C   Product–Product: protection* – software 

 Implement exception handling to protect the flight processor from aborts due to data handling errors. 
C   Product–Product: protect* – processor – data 
E   Process–Product: handling – data 

 Do not cut corners in testing critical flight software. 
E   Process–Product: testing – software 

 Over 65,000 lines of flight code (only 20% inherited) were developed in 17 increments within one year, leaving little time for 
thorough testing. 
E   Product–Process: code – increments 
B   Process–Process: increments – testing 

 
36 Implement Independent Fault Protection (II) 

 Create extensive, realistic nominal and anomalous operational scenarios for testing at every level, from unit through system 
test. 
E   Product–Process: scenarios* – testing 
C   Product–Product: unit – system 

 Implement robust simulators, including hardware–in–the–loop, for testing critical flight software functions. 
C   Product–Product: hardware – software 
E   Process–Product: testing – software 
B   Process–Process: simulators – testing 

 Apply independent fault protection, such as hardware watchdogs, to mitigate risk in realtime systems, where errors can be so 
deeply buried as to be practically undetectable. 
C   Product–Product: protection* – hardware – system 
B   Process–Process: mitigate – undetect 
E   Process–Product: mitigate – system 

 The processor feeds a series of programmed pulses into the hardware timer, which will reset itself and await the next input. If 
the expected heartbeat does not arrive, the watchdog knows that the processor has probably crashed and intervenes (such as 
by initiating a fault protection routine). 
C   Product–Product: pulses – timer; processor – routine 

 
37 Aim for Realistic Schedules in Development Projects 

 Provide a detailed interface specification as early in the system lifecycle as possible. 
E   Product–Process:  specification – lifecycle 
C   Product–Product: specification – system 

 Program Office fosters a cooperative working arrangement among system contractors and proactively maintains realistic 
power, weight, and volume reserves. 
A   People–People: program office – contractors 
G   People – Process - Product: contractors – maintain – power*, weight*, volume* 
C   Product–Product: power*, weight*, volume* – system 
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 Create engineering models so that problems can be discovered early. 
B   Process–Process: models – discover 

 Slim margins, unproven technology, tight schedules, and fixed cost conspired to incrementally push the delivery date.  
E   Product–Process: margins, technology, schedule, cost – delivery 
 

38 Do Not Ignore Unexplained Test Anomalies 

 Test under all operating conditions—not only sunlight and eclipse operation, but transitions, safe–hold mode, load–shed mode, 
and recovery mode. 
B   Process–Process: test – operations, transitions, mode 

 Strive to understand implications of test anomalies. 
D   People–Process: understand – test 

 Ensure perceptive instrumentation, lest test–set glitches cast doubt on results. 
D   People–Process: doubt – test 

 Minor design changes in power supplies can result in disastrous consequences. Double–check design changes, and perform 
independent analysis where practical. 
E   Process–Product: design – power supplies 
B   Process–Process: check – changes – analysis 

 The line filter and feed–through capacitor combined to resonate at a crossover frequency.  The array would suffer sustained 
oscillation and fail. 
C   Product–Product: filter – capacitor – array 
E   Process–Product: combine – frequency* 
B   Process–Process: combine – sustain 

 
39 Thoroughly Review Test Data for Early Indicators of Anomalies 

 Carefully inspect all test and operational data for trends, oddities, and out–of–family values, even when all values are within 
preset limits. Evaluate all indicators for potential impacts, should trends continue. Seek to explain all instances of anomalous 
data. 
B   Process–Process: test – trends, evaluate, explain 
E   Process–Product: test – data 

 Make sure that experienced operators closely monitor the satellite’s health during early operations. 
F   People–Product: operators – satellite 
C   Product–Product: satellite – health 

 Provide ground–commandable back–up heaters. 
C   Product–Product: ground – heaters 
E   Process–Product: back–up – heaters 

 Install heaters to fill/drain lines, and provide temperature monitors for all propellant lines and valves. 
C   Product–Product: heaters, monitors – lines, valves 

 Damage of the wiring at the heater lead probably caused the failure. A more robust configuration was used in all subsequent 
flights. 
C   Product–Product: wiring – lead 
B   Process–Process: configuration – flights 
E   Process–Product: configuration – wiring 

 Although the heater failed during early ground tests, the problem was not recognized because temperature limit checks were 
set to accommodate test environment changes, not to verify heater performance. Later tests and operations used computer–
controlled stepwise limit checks to highlight anomalous behaviors early. 
E   Product–Process: heater – test 
C   Product–Product: computer – behavior 
B   Process–Process: checks – changes; test – operations 

 
40 Avoid Radio Frequency Interference 

 Understand why requirements exist in legacy designs before discarding them. 
G   People – Process - Product: understand – design – requirements  

 Coordinate spectrum planning with authorities (for example, Manager of Spectrum Allocation at the Space Command), 
because not all frequency usages are public information. 
G   People – Process - Product: authorities – planning – spectrum 
A   People–People: authorities – public 

 Emission from crosslinks can reach Earth and interfere with other users. 
G   People – Process - Product: users – emission – crosslinks 

 The emission problem can be cured by phasing the signals in the array to place a null toward Earth. 
C   Product–Product: signals – array 
E   Product–Process: null – emission 
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41 Carefully Consider the Implication of Test Failures Beyond the Narrow Issues at Hand 

 Thoroughly evaluate the heritage and applicability of using existing or flight–Proven equipment, especially if modifications have 
been made. 
E   Process–Product: evaluate – equipment 
B   Process–Process: evaluate – modifications 

 Include shorting in analyzing potential failure modes of power systems. 
E   Process–Product: analyzing – modes  
C   Product–Product: modes – systems 

 Apply manufacturing and handling practices that minimize slip ring damage. 
B   Process–Process: manufacturing – handling – damage 
E   Process–Product: damage – ring 

 Shorting of slip rings is fairly common— improperly lubricated brushes can easily abrade conductive slivers out of the rings. 
C   Product–Product: rings – brushes 

 The voltage gap across adjacent brushes exacerbated shorting by triggering an arc, which wrecked every anode in its path. 
C   Product–Product: brushes – anode 

 
42 Account for Electrostatic Interaction in Structural Analysis 

 Be aware of the propensity of dielectrics to pick up an electrostatic charge in space. 
C   Product–Product: dielectrics – electrostatic* 
E   Product–Process: dielectrics – space 

 Thoroughly review the potential impacts of the space environment on flight hardware. 
B   Process–Process: review – impacts 
E   Product–Process: hardware – space environment 

 Whenever possible, a design’s operation in space (0 G) should be designed to be verifiable under 1 G test conditions. 
B   Process–Process: design – verifiable 
E   Process–Product: design – conditions* 

 Test the entire system in the final flight configuration. 
E   Process–Product: test – system 
B   Process–Process: test – configuration 

 The sunshield curled toward the antenna due to charges that accumulated in the insulators. Notice that electrostatic attraction 
can take place even though one surface (the sunshield in this case) is grounded. 
C   Product–Product: sunshield – antenna – insulators – electrostatic* 

 
43 Do Not Circumvent Processes Designed to Catch Human Errors 

 Ascertain software databases as thoroughly as the source codes. 
C   Product–Product: databases – source code 

 Verify software algorithm and database on a simulator whenever possible. 
C   Product–Product: algorithm – database 
E   Product–Process: software – simulator 
B   Process–Process: verify – simulator 

 Double–check manually entered data against original sources. 
E   Process–Product: check – data 
C   Product–Product: data – sources 

 Automate data transfer and checking whenever possible to minimize human error. 
G   People – Process - Product: human – automate – data 

 Programmer applied an incorrect formula in the ground software led to the failure of Mariner I in 1962. 
C   Product–Product: formula – software; software – Mariner I 
G   People – Process - Product: programmer – applied – software 
E   Product–Process: software – failure 

 
44 Beware of Sneak Paths Through Test Equipment 

 Determine and correct the root cause of all failures. 
B   Process–Process: determine – correct 

 Trace the flow of power and signals from source to load during troubleshooting. 
E   Process–Product: trace – power, signals 
C   Product–Product: power – signals 
B   Process–Process: trace – troubleshooting 

 Provide a mechanism to independently validate the status of critical components. 
B   Process–Process: mechanism – validate 
E   Process–Product: validate – components 

 Inject unexpected conditions (such as a closed relay, current surge, and sluggish separation wire breakage) during reliability 
analysis to discover lurking failure paths. 
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E   Product–Process: conditions* – analysis 

 A latch in the separation sensor (powered via relay) opens after the satellite breaks away from the launcher, deploying the 
solar array via relay. 
C   Product–Product: latch – sensor – relay – satellite – launcher – solar array 

 Failure of relay, due to the addition of a filter, formed a sneak path (dashed line) via the simulator port, triggering the 
prelaunch anomaly. Premature separation in fact could not occur in flight because the port is not used. 
C   Product–Product: relay – filter – port 
E   Product–Process: port – prelaunch 
B   Process–Process: prelaunch – flight 

 
45 Guard Against Chloride Contamination Due to Manufacturing Process Changes 

 Heat pipes are highly sensitive to minor materials and process changes. 
C   Product–Product: pipes – materials 
E   Product–Process:  pipes – changes 

 Seemingly minor process alterations can have catastrophic side effects. 
B   Process–Process: alterations – effects 

 Allow sufficient time before conducting tests of chemical degradation. 
B   Process–Process: time – test 

 An engine suffered severe leak during recent ignition testing because the chamber was cleaned with over–the–counter 
detergent. 
E   Product–Process: engine – testing 
C   Product–Product: engine – chamber 
B   Process–Process: testing – cleaned 

 Chloride in the cleaner induced stress corrosion, cracking the tubes. 
C   Product–Product: chloride – tubes 
B   Process–Process: cleaner – corrosion 
E   Process–Product: cleaner – tubes  

 
46 Make Sure Test Equipment Is Sufficiently Capable 

 Budget for high fidelity, reproducible, functional tests to facilitate troubleshooting. 
B   Process–Process: budget – test 

 Troubleshooting was hampered because the test set could not monitor all channels. 
E   Process–Product: troubleshooting – channels 

 The reliance on oscilloscopes made data collection inefficient. 
B   Process–Process: reliance – collection 
E   Process–Product: reliance – oscilloscopes, data 
C   Product–Product: oscilloscopes – data 

 Digital data collection from all ports solved the problem in a few days. 
E   Process–Product: collection – data 
B   Process–Process: collection – solve 
C   Product–Product: data – ports 

 Housekeeping (as opposed to hardware–related) glitches in facility, software, equipment, or connectors routinely account for 
the majority of discrepancy reports, unnecessarily impacting program scheduling. 
B   Process–Process: housekeeping – scheduling 
C   Product–Product: facility – software – equipment – connectors 
E   Process–Product: housekeeping – software 

 
47 Review Hardware Reusability When Configuration Changes Affect Margins 

 Recognize that workmanship plays a large role in the space hardware, and reliability may be compromised when undertrained 
personnel assemble heritage equipment. 
G   People – Process - Product: personnel – assemble – hardware 
B   Process–Process: assemble – reliability 

 Computerize manufacturability analysis, including interface tolerance buildup, dynamic interference, and ease of inspection on 
all packaging designs. 
B   Process–Process: design – analysis – inspection – packaging 

 Provide automatic fault management mechanisms so that a single defect will not bring down the entire system. 
B   Process–Process: automatic – management 

 An inspection of the hardware destined for the next flight revealed that many screws were too long to fit into the space 
between the relay mount and the radiator plate, making a short virtually inevitable. 
E   Process–Product: inspection – hardware 
C   Product–Product: screws – mount – plate 

 Moreover, the heatsink barely cleared the unit walls. Because the heatsink was not conformably coated, debris such as a loose 
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solder ball could also have caused a short. 
C   Product–Product: heatsink – walls 
E   Process–Product: coated – heatsink 

 
48 Thoroughly Reverify Software When Requirements Change 

 Re–verify software performance when it’s intended environment changes. 
E   Process–Product: re–verify – software 
B   Process–Process: re–verify – changes 

 Thoroughly analyze the impact of loss of precision. 
E   Process–Product: analyze – precision* 

 Ensure change analysis is complete and changes are comprehensively verified. 
B   Process–Process: analysis – changes – verified 

 Cumulative precision loss let the radar look in the wrong place (range gate) for the Scud. 
C   Product–Product: precision* – radar; radar – range gate – Scud 

 
49 Equipment Intended for Use in Simulated Space Environments Should Be Space–Rated 

 Perform formal design reviews on ground–test equipment intended for use in space–like environments. 
E   Process–Product: review – equipment 

 Test radio frequency equipment in vacuum to 6 decibels over the expected input level (to account for unfavorable signal 
return) to ensure operational safety. 
C   Product–Product: equipment – vacuum 
B   Process–Process: test – safety 
E   Process–Product: test – equipment 

 Monitor flight hardware during test lest overstressing cause damage. 
E   Product–Process: hardware – test 
B   Process–Process: test – damage 

 Improve interfaces between payload engineers and bus engineers, particularly during system level tests. 
A   People–People: payload engineers – bus engineers 
G   People – Process - Product: engineers – test – system 
C   Product–Product: payload – bus – system 

 A test set scheduled for use in the thermal vacuum chamber contained cadmium–Plated parts. Cadmium, commonly used to 
plate military components, sublimes in vacuum and is not allowed in space. If the test had gone ahead, the cadmium could 
have contaminated not only the spacecraft being tested, but also the chamber and future satellites! 
C   Product–Product: chamber – cadmium; chamber – spacecraft; component – spacecraft 
E   Product–Process: cadmium – test 
B   Process–Process: test – space 

 
50 Virtual Cross–strapping Extends Satellite Life 

 On–board reprogrammability provides enormous flexibility. 
B   Process–Process: reprogrammability – flexibility 

 In a tight spot, seek cross–Program wisdom from diverse organizations. 
A   People–People: cross–Program – organizations 

 Capture knowledge of heritage designs and look for novel ways to take advantage of design features. 
D   People–Process: knowledge – design 

 The gimbal controller design included a path to forward–control nonlinear motor driver behavior. 
C   Product–Product: gimbal – motor 

 The rescue scheme fed commands, derived from sensor A data and calculated by the processor using new control laws, into the 
motor controller B via this route, bypassing the processor B. 
E   Process–Product: scheme – sensor – processor – motor 

 
51 Review Troubleshooting Process When Encountering Surprising Test Results 

 Consider using bar coding in production control. 
B   Process–Process: bar coding – production 

 Incorporate design features, such as colored cables, to preclude human errors. 
G   People –Process - Product: human – design – cables 

 Don't overlook simple human errors when confronting unexplained problems. 
G   People – Process - Product: human – overlook – problems 

 A thermal vacuum test was delayed because two rolls of Kapton tapes were mixed up. 
B   Process–Process: test – mixed–up 
E   Product–Process: tapes – mixed–up 

 Both rolls of tape came from the same supplier and looked exactly the same. 
G   People – Process - Product: supplier – came from – tape 
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B   Process–Process: came from – looked same 

 However, the roll of tape inadvertently used to attach insulation blankets contained an adhesive that was based on silicone 
instead of on low–outgassing acrylics. 
C   Product–Product: tape – blankets – adhesive – silicone – acrylics 

 The satellite had to be baked and pumped for a long time before silicone outgassing subsided. 
E   Product–Process: satellite – baked, pumped 
B   Process–Process: baked – pumped 
C   Product–Product: satellite – silicone 

 
52 Protect Cryogenic Systems Against Thermal Expansion Mismatch 

 Perform in–depth modeling and thermal cycling tests on cryogenic systems, which are delicate equipment involving complex 
physics and material behavior. 
B   Process–Process: modeling – test 
E   Process–Product: modeling, test – systems 
C   Product–Product: systems – equipment – behavior* 

 Provide adequate tolerances for thermal expansion mismatch (using flexible links, for example). 
C   Product–Product: tolerances* – mismatch* 

 Be extra vigilant when stretching the state–of–the–art. 
G   People - Process - Product: vigilant – stretching – state–of–the–art 

 Because the aft part, though which supercold helium was pumped, was colder than the forward part, forward nitrogen could 
sublime and refreeze aft, eliminating ullage space. After helium flow stopped, the tank warmed up. The large CTE differential 
(700 ppm/°K for solid nitrogen, 17 ppm/°K for aluminum) probably forced the dewar to yield. Progressive deformation 
gradually closed the gaps between the baffles. 
C   Product–Product: aft part – helium – forward part – nitrogen – dewar – baffles 

 
53 Test Hardware and Software Together 

 Rigorously control configuration, especially at hardware/software interface. 
E   Process–Product: configuration control – hardware, software 
C   Product–Product: hardware – software 

 Always ascertain torquer polarity. 
E   Process–Product: ascertain – polarity* 
C   Product–Product: torque – polarity* 

 Provide sufficient ground station coverage in early operation. 
C   Product–Product: station – coverage* 
E   Product–Process: coverage* – operation 

 Design battery protection to keep the satellite alive long enough for troubleshooting by implementing automatic load shedding 
and by configuring solar panels so that even a partially deployed array could keep battery charged. 
E   Process–Product: design – battery 
C   Product–Product: battery – satellite – solar panels – array 
B   Process–Process: design – troubleshooting – deployed 

 Magnetic torquers are coils wound around an iron core. Passing a current through the coils creates a magnetic dipole which 
interacts with the Earth's magnetic field and generates a feeble torque. Reversing the current flow (phase) produces the 
opposite effect. Torquer polarity mistakes occur often. 
C   Product–Product: torquers – coils – core – current – dipole – torque – polarity 

 The orientations of large coils are easily verified with a magnetometer (essentially a compass). Background noise can make 
checking small torquers difficult. 
C   Product–Product: coils – torquers 
E   Process–Product: verified – coils, torquers 

 
54 Design and Handle Cryogenic Equipment with Great Care 

 Review and follow operating and transportation procedures associated with cryogenic equipment to ensure safety to personnel, 
flight hardware, or facilities. 
B   Process–Process: review – follow – safety – facilities 
G   People – Process - Product: personnel – safety – procedures* 
C   Product–Product: procedures* – equipment – hardware 
E   Process–Product: review, follow – procedures* 

 Provide a graceful failure mechanism, if possible, to prevent catastrophic failure. 
B   Process–Process: mechanism – prevent 

 Design for containment making sure the cryogens that unexpectedly boil off can be constrained within the vessel. 
E   Process–Product: design – cryogens 
C   Product–Product: cryogens – vessel 

 Provide redundant vent paths. 
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E   Process–Product: redundant – vent 

 Design for convenient disassembly to aid inspection and maintenance. 
B   Process–Process: design – disassembly – inspection – maintenance 

 Service absolute pressure valves often, but never exceed vendor specifications. Test valves before every field operation. 
E   Process–Product: service, test – valves 
F   People–Product: vendor – specifications 
B   Process–Process: service – test – operation 
 

55 Do Not Dismiss Test Anomalies as Random Events–Find Out Why (I) 

 Exhaustively search for the root cause of failures. 
B   Process–Process: search – root cause 

 Conduct fully instrumented tests. 
E   Product–Process: instrument – tests 

 Provide sufficient thermal and structural margins to allow for material, manufacturing, and processing fluctuations. 
E   Product–Process: margins* – manufacturing 

 The independent investigation prompted NASA to conduct its own instrumented firing, which proved the buckling scenario. 
G   People – Process - Product: NASA – investigation – scenario* 

 
56 Do Not Dismiss Test Anomalies as Random Events–Find Out Why (II) 

 Define and implement a verification plan. 
B   Process–Process: verification – plan 

 Perform a worst–case circuit analysis to meet defined interface requirements. 
E   Process–Product: analysis – requirements  

 Always ascertain the root causes of ground test anomalies. 
B   Process–Process: ascertain – test 

 Signals from the Sun Sensor passed through the EMI filter, the slip rings, and the amplifier to the controller. The controller 
oriented the boom by alternating the motor between two states (A, A' transistors on the H–bridge open, B, B' closed; and B, B' 
open, A, A' closed). 
C   Product–Product: sensor – filter – rings – amplifier – controller – boom – motor 

 The grounded EMI filter, coupled with a circuit not designed for fast switching, allowed transient noises from the chassis to 
momentarily turn all transistors on, blowing the fuse. Installation of a resistor eliminates the noise problem. 
C   Product–Product: filter – circuit – chassis – transistors – fuse – resistor 
E   Process–Product: installation – resistor 

 
57 Protect Propulsion System from Contamination 

 Consider retrofitting legacy hardware with proven design upgrades. Anticipate out–of–sequence operations, such as rework, 
during hardware design. 
B   Process–Process: design – upgrade – operations 
E   Process–Product: upgrade, design – hardware 

 Design propulsion systems to accommodate ground handling by including features such as low point drains to facilitate fuel 
removal. 
E   Process–Product: design – systems 
B   Process–Process: design – handling – removal 
C   Product–Product: systems – drains – fuel 

 Archive manufacturing documents. 
B   Process–Process: archive – manufacturing 

 The higher location of the fill/drain port in the legacy propulsion system prevents gravity draining, and the single seat valve is 
prone to leak. Dual seat valves, typically used in new designs, would have prevented air ingression unless both valves leaked. 
C   Product–Product: port – system – valve 
E   Product–Process: valve – design 

 An ICBM, refurbished to launch satellites, suffered performance degradation recently after its turbine seal leaked, allowing 
ammonia in the exhaust gas to react with the lubricant, plugging the filter and blocking lubricant circulation. The problem, 
chemically alike the thruster contamination, was addressed in the follow–on generation of the rockets, but the original units 
were not retrofitted. 
C   Product–Product: ICBM – satellites – seal – lubricant – filter – thruster – units 
E   Process–Product: retrofit – ICBM 
B   Process–Process: retrofit – launch 

 
58 Guard Against Sneak Paths Through Ground Test Equipment 

 Independently confirm hardware performance for functions temporarily provided by test equipment. 
E   Process–Product: test – hardware 

 Use a breakout box to check harness connector paths, and directions and magnitudes of currents flows. 
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E   Process–Product: test – harness 
C   Product–Product: hardware – harness 

 A flight box was not grounded by mistake. The problem was missed because the test equipment supplied grounding. 
C   Product–Product: box – grounding* 
E   Process–Product: test – grounding* 

 
59 Lesson from Challenger: Understand Your Data! 

 Consider all relevant information. 
E   Process–Product: consider – information 

 Develop a coherent explanation of engineering data to help audience analyze risks. 
B   Process–Process: develop – analyze 
E   Process–Product: develop, analyze – data 

 Display data cogently. 
E   Process–Product: display – data 

 A table of temperature data presented during pre–launch teleconference included irrelevant information but only selective 
flight. The audience was misled. 
B   Process–Process: pre–launch – flight 
F   People–Product: audience – data 
A   People–People: teleconference – audience 

 Anomalies rarely occurred in warm days, but routinely took place during launches below 65°F. 
E   Process–Product: launch – warm days* 

 
60 Tests Are for Verification, Not for Discovery 

 Expected test results should be established in advance of the test. Deviation from expected results should raise a flag, and be 
thoroughly investigated before making any changes. 
B   Process–Process: test – deviation 

 Rigorously manage software development, especially on requirements, interfaces, and configuration control. 
B   Process–Process: manage – development – configuration control 
E   Process–Product: development – software, requirements 
C   Product–Product: software – requirements 

 Plan for contingencies, using a top–down fault tree (ask "what happens if the satellite failed to de–spin?" for example). 
E   Process–Product: plan – contingencies* 

 Double–check torquer signs. 
E   Process–Product: check – torque 

 Opposite magnetic poles attract. The north pole of magnet needles points to the Earth's magnetic. South Pole also called the 
geomagnetic North Pole! 
C   Product–Product: poles – magnet – needles – Earth 

 
61 Do Not Assume a Situation Is Acceptable Simply Because Nothing Is Said About It in Documents 

 Double–check designs against possible mis–installation. 
B   Process–Process: check – design – installation 

 Make sure field–assembled hardware can be inspected. 
B   Process–Process: assemble – inspect 
E   Process–Product: assemble – hardware 

 An on–board video camera captured the inter–stage hang–up, enabling the investigation team to create a dynamic model and 
to replicate the problem on a mockup. 
G   People – Process - Product: team – model – camera 

 
62 Test as You Fly 

 Analyze prior incidents of equipment malfunction. 
E   Process–Product: analyze – equipment 

 Review all aspects of battery application. Do not regard batteries as simple Plug–and–Play items. 
E   Process–Product: review – battery, Plug–and–Play* 
C   Product–Product: battery – Plug–and–Play* 

 Dry silver/zinc batteries are activated by adding electrolytes in a vacuum environment. Once filled, internal reactions can lead 
to frothing and spattering. Launch depressurization and continuous discharging heat up the cells, causing more spills. 
C   Product–Product: batteries – electrolytes – cells 
E   Process–Product: launch – batteries 

 Serious mishaps had occurred, even on the ground. Several years ago, a launch delay caused a battery to exceed its wet life. 
Days later, it caught fire. Apparently, drops of escaped electrolyte made their way along the power wires via capillary action, 
shorting a connector. 
E   Process–Product: launch – battery 
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C   Product–Product: battery – electrolyte – wires – capillary – connector 
 
63 Verify Field Installations of All Single–Point–Failure Items 

 Simplify interfaces, commands, and procedures in prelaunch operations lest the hectic pace cause errors. 
E   Process–Product: simplify – procedures* 
B   Process–Process: simplify – prelaunch – operations 

 Verify final assembly operations, particularly on single–Point–failure risks. Pay particular attention to possible connector mis–
mating. 
B   Process–Process: verify – assembly – operations 
E   Process–Product: verify – connector 

 Do not allow primary and redundant sides of critical circuits to join in a single–Point failure area. 
E   Process–Product: allow – sides 
C   Product–Product: sides – circuit – area 

 
64 Review Out–Of–Flow Processes to Ensure No Steps Are Bypassed 

 Make sure corrections in engineering drawings or work instructions are back annotated in all applicable drawings and shop 
orders (including subsequent builds and units that have been distributed). 
E   Process–Product: corrections – drawings, instructions 
B   Process–Process: corrections – builds 
C   Product–Product: drawings, instructions – units 

 Conduct final walkthroughs in the presence of the most experienced personnel. 
D   People–Process: personnel – walkthroughs 

 Keep good records of all "non–flight" installations. 
B   Process–Process: records – installations 

 A satellite used active louvers to control the base–Plate temperature of an instrument. 
C   Product–Product: satellite – louvers – base–Plate – instrument 

 The system, including the louvers, underwent thermal vacuum testing, after which the louvers were removed. They were 
temporarily reinstalled, without being connected, for fit check. 
E   Process–Product: test – system 
C   Product–Product: system – louvers 
B   Process–Process: test – reinstall 

 The louvers were left in place, without anyone realizing that the connector remained unattached. Pre–shipment checks did not 
verify the mate status because the connector was not accessible. 
C   Product–Product: louvers – connector – accessible* 
E   Process–Product: check – connector 

 Running too hot in space, the instrument suffered significant degradation. 
C   Product–Product: instrument – space* 

 
65 Perform Thorough Post–Flight Analysis 

 Track down the root causes of anomalies and consider implications beyond the narrow issues at hand. 
E   Process–Product: track – anomalies; consider – implications* 
B   Process–Process: track – consider 

 Unexpected hardware behavior implies a failure to understand the application. Safety cannot be inferred just because the 
mission succeeded since the problem may be much more severe next time. 
G   People – Process - Product: understand – mission – safety* 

 Misleading instructions on drawings led assemblers to wrap thermal tapes too close to a separation connector. The stage 
jammed, stranding the satellite. 
G   People – Process - Product: assemblers – wrap – tape 
C   Product–Product: drawings – tape – connector – satellite 
B   Process–Process: wrap – stage 
E   Process–Product: wrap – tapes 

 Eleven previous flights were subsequently reviewed; all showed the same hang–up. 
E   Process–Product: review – flights 

 Seven, in fact, were saved only because the floating connectors were jolted apart when they hit the allowable stops. The 
mission right before the failure had the narrowest escape. 
E   Process–Product: stops – connectors 
B   Process–Process: stops – mission 

 The warning signs were not pursued. 
E   Process–Product: pursue – signs 

 
66 Thoroughly Analyze All Environmental Load Paths and Develop a Detailed System Dynamic Model 

 Provide extra margins to accommodate excessive launch shocks that occasionally occur, especially with new launch vehicles. 
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E   Process–Product: launch – margins* 
C   Product–Product: vehicle – margins* 

 Independently review dynamic loads analysis prior to test. 
B   Process–Process: review – analysis – test 

 Adequately instrument the unit, subsystem, and vehicle during environment tests. 
C   Product–Product: unit – subsystem – vehicle 
E   Product–Process: vehicle – tests 

 Check all data and inspect critical parts for damage after tests. 
E   Process–Product: check – data; inspect – parts 
B   Process–Process: check – inspect – tests 

 
67 Provide Design Flexibility to Enable Emergency Recovery 

 Provide as much telemetry as possible on launch vehicles, especially on separation events. Without knowing how the satellite 
malfunctioned, controllers would likely have given up before the downlink was received! 
E   Process–Product: launch – vehicle, satellite 
G   People - Process - Product: controllers – receive – telemetry 
C   Product–Product: vehicle – satellite – telemetry 

 Accurate attitude knowledge, especially during orbit night when most of the observations were made, posed the next 
challenge. The satellite no longer rotated as a rigid body; even the spin axis orientation was uncertain. 
G   People - Process - Product: knowledge – observations – attitude* 
C   Product–Product: satellite – axis 

 The program created a non–linear rigid body model. Using Sun sensor and horizon crossing indicator data as input, an 
algorithm incorporating Kalman filters calculated the satellite attitude to 0.25º accuracy, even during most of the orbit nights 
when direct sensor readings were unavailable. 
G   People - Process - Product: program – model – attitude* 
C   Product–Product: data – filters – satellite – sensor 

 Most mission requirements were met. 
E   Process–Product: mission – requirements* 

 
68 Insist On End–to–End Ownership to Verify Interfaces 

 Develop end–to–end diagrams for electrical and mechanical interfaces, including software driven interfaces. 
E   Process–Product: develop – diagrams* 
C   Product–Product: electrical – mechanical – software 

 Clearly label each connector to avoid mis–mating. 
E   Process–Product: label – connector 

 
69 Protect Solid Rocket Grain Structure from Destabilizing Gas Flow 

 Conduct adequate sub–scale testing. 
B   Process–Process: conduct – testing 

 Study post–test and post–flight anomaly reports from similar programs. 
B   Process–Process: study – test – flight 
E   Process–Product: study – reports  

 The original design constricted flow at the segment joint. The grain cracked, further raising chamber pressure. 
E   Process–Product: design – joint 
C   Product–Product: grain – chamber 

 Chamfering of the forward grain face eliminated the chokepoint. 
E   Process–Product: chamfering – grain 

 
70 Late Modifications Require Careful Revalidation 

 Perform thorough analysis and testing of late hardware changes. Pay particular attention to system–level impacts. 
B   Process–Process: analysis – testing – changes 
C   Product–Product: hardware – system 
E   Process–Product: analysis, testing, changes – hardware 

 Update structural analysis following design changes to find problems earlier. 
B   Process–Process: update – analysis – design 

 Avoid assessing design changes from a narrow, discipline–oriented view. 
B   Process–Process: design – changes – view 

 
71 Make Sure Ground Support Equipment Cannot Damage Flight Hardware 

 Ensure heritage thermostats and relays properly function when the system is redesigned for higher voltages. 
C   Product–Product: thermostats – relays – system 
E   Product–Process: system – redesign 
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 Provide ample test instrumentation to validate that all components of a system are functioning properly, and always check for 
unplanned current draw. 
E   Process–Product: test – components 
C   Product–Product: components – system 

 Individual heater circuits should not draw more than two amps to prevent thermostats from being damaged by self heating 
(each of the Apollo 13 switches drew six amps). 
C   Product–Product: circuits – thermostats 

 Thoroughly test subsystems that are not exercised until they are integrated into the main spacecraft (such as propulsion lines) 
during system thermal vacuum test. 
E   Process–Product: test – subsystems 
C   Product–Product: subsystems – spacecraft 

 
72 Prevent Failures in Support Equipment from Propagating into Flight Boxes 

 Buffer test point outputs so shorts in test will not damage flight hardware. 
E   Process–Product: test – hardware 
B   Process–Process: test – flight 

 Implement abort logic in automated test equipment to prevent damage if a failure occurs. 
E   Process–Product: test – equipment 

 Thoroughly understand the inner workings of any item that interacts with flight hardware. 
G   People - Process - Product: understand – workings – hardware 
E   Process–Product: flight – hardware 
C   Product–Product: item – hardware 

 Reed relays, commonly used in control circuits, consist of two overlapping iron strips enclosed in a glass tube. The contacts are 
readily closed with a magnetic field applied via the surrounding coils.  The strips should spring back to their normally open 
position after the field is turned off, but residual magnetism or magnetic contaminants sometimes keep them stuck closed. 
C   Product–Product: relays – circuits – strips – tube – contacts – coils – magnet 

 
73 Trace All Software Changes Back to System Requirements and Specifications–Do Not Simply Modify the Code 

 Any software that commands a satellite is mission critical, even though it may not be embedded in the flight vehicle. 
C   Product–Product: software – satellite – vehicle 
B   Process–Process: mission – flight 
E   Process–Product: flight – vehicle 

 Validate changes in mission–critical software with more vigor than the original development.  Rigorous formal testing is 
essential. 
B   Process–Process: validate – changes – mission – development 
E   Process–Product: changes – software; testing – formal* 

 Always specify the units in requirements and interface specifications. 
E   Process–Product: specify – units 
C   Product–Product: units – requirements* – specifications* 

 Generate expected results used in verification tests independently, in accordance with system requirements. 
E   Process–Product: tests – requirements* 
C   Product–Product: system – requirements* 

 
74 Understand Why Warning Lights Come On Before Disabling Them 

 Operate environmental tests with the same degree of care as space operation. 
B   Process–Process: test – operation 

 Develop test contingency plans and failure–mode–and–effect–analyses for ground support equipment (for example, analyze 
the likelihood of contamination in case the thermal vacuum facility loses power). 
B   Process–Process: develop – test – plan – support 
E   Process–Product: support – equipment 

 If turning off a piece of test equipment can endanger flight hardware, such equipment must not be allowed to shut down 
autonomously. 
E   Process–Product: test, flight – equipment, hardware  
B   Process–Process: test – flight 
C   Product–Product: equipment – hardware 

 
75 Protect High–Voltage Equipment from Contamination 

 Design high–voltage equipment to withstand mishandling. 
B   Process–Process: design – mishandling 
E   Process–Product: design – equipment 

 Properly vent enclosed storage areas to eliminate corona and arcing caused by out–gassing and pressure buildup. 
B   Process–Process: storage – buildup 
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 Thoroughly test the entire circuit if a high voltage is expected. 
E   Process–Product: test – circuit 

 
76 Make Sure Someone Takes Responsibility for Each Interface 

 Check ground operation procedures and support equipment to avoid damage to flight hardware. 
E   Process–Product: check – procedures* 
C   Product–Product: procedures – equipment – hardware 
B   Process–Process: check – flight 

 Ensure interfaces between two organizations are worked out in detail, agreed to by both sides, and documented. 
G   People – Process - Product: organizations – agree – interfaces 
B   Process–Process: agree – document 

 Bound each requirement within a range. 
E   Process–Product: bound – requirement* 

 The Importance of Stating TBDs. Agency B's cooling plan stated that the equipment would be set to "agency A value" or 
"desired" flow rate." The two partners reviewed the plan step by step, never realizing that this number had not been agreed 
upon. 
G   People – Process - Product: partners – review – TBDs* 
D   People–Process: agency – plan 
B   Process–Process: plan – review 
A   People–People: agency – partners 
C   Product–Product: TBDs – equipment 

 Stating "set to TBD ± TBD units (agency A value to be supplied)" would have raised a flag and avoided the misunderstanding. 
G   People – Process - Product: understanding – stating – TBD* 

 
77 Make Sure Sequential Safety Devices Operate Independently 

 Beware that many programmable devices do not follow their truth tables at power–on. 
C   Product–Product: devices – tables* 

 After the bus power is switched to the pyro box via a relay, the controller (a field programmable gate array, FPGA) should be 
safe and initialized at the direction of an oscillator clock. 
C   Product–Product: bus – box – relay – array 

 
78 Thermal Blankets and Tie–down Cables Can Jam Mechanisms 

 Anticipate the errant movement and expansion of flexible materials, such as wires and blankets. 
C   Product–Product: materials – wires – blankets 
E   Process–Product: anticipate – materials 

 Allow thermal blankets to vent whenever possible. 
E   Process–Product: allow – blankets 

 Avoid protrusions or sharp edges that can snag soft items. 
E   Process–Product: avoid – edges* 
C   Product–Product: edges* – items 

 Indicate the presence of soft goods on top–level assembly drawings to draw attention to the risks of interference and 
obstruction problems. 
E   Process–Product: assembly – goods 
C   Product–Product: goods – drawings 

 
79 Make Sure Software and Hardware Engineers Communicate with Each Other 

 Make sure no single parameter error or single spacecraft malfunction can cause endless cycling (for example, by enabling the 
watchdog function to switch to a recovery mode after a few "try agains"). 
E   Process–Product: make sure – parameter* 
C   Product–Product: parameter* – spacecraft 
B   Process–Process: make sure – cycling 

 Double–check last–minute code changes. 
B   Process–Process: check – changes 
E   Process–Product: changes – code 

 Problems in embedded systems are not always due to random hardware defects. Pause and think before inflicting the same 
software flaw on the redundant side. 
G   People – Process - Product: think – inflicting – software 
C   Product–Product: systems – hardware – software 

 The computer uses an independently clocked watchdog function to enable switching to the redundant CPU if the primary side 
malfunctions (for example, due to radiation damage). 
C   Product–Product: computer – clock – CPU 

 The final software mistakenly set the watchdog counter to 0.1–s, but it took the hardware about a third of a second to boot. 
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The CPU could not finish booting before being reset, and was stuck in an endless loop. 
C   Product–Product: software – counter – hardware – CPU 

 
80 Check, Double–check, and Triple–check Torquer Phases 

 Don't overlook simple tests that can discover problems early. 
G   People – Process - Product: overlook – test – problems 

 Whenever possible, conduct independent analyses. 
D   People–Process: independent – analyses 

 Document attitude control coordinate frames early in development to avoid mistakes. 
E   Process–Product: document – attitude* 
B   Process–Process: document – development 

 The calculated moments of inertia, which should have been referenced against the center of gravity, were instead referenced 
against the origin point on the drawing. The mistake was caught by an independent analysis. 
E   Process–Product: analysis – drawing 

 The star tracker misbehaved on–orbit because the vendor altered its coordinate convention but the change notice was not 
heeded. 
G   People – Process - Product: vendor – alter – tracker 
B   Process–Process: alter – heeded 

 
81 Designate a Responsible Engineer for Complex Equipment 

 Designers should inspect actual hardware. 
G   People-Process - Product: designers – inspect – hardware 

 Analysis does not obviate the need to test. 
B   Process–Process: analysis – test 

 Supersonic air rammed through a supposedly sealed tunnel on the shield, generating excessive lift that broke the shield as well 
as a nearby solar array. 
C   Product–Product: tunnel – shield – solar array 

 
82 Understand Transient Behavior of Analog Circuits 

 Check time–dependent circuit behavior, and bound transients in specifications. 
E   Process–Product: check – circuit 

 Do not qualify a design solely because a unit worked. Measure circuit parameters and verify that positive margins exist. 
E   Process–Product: design – unit; verify – circuit 
B   Process–Process: design – verify 
C   Product–Product: unit – circuit 

 Analyze instrumentation data, which can provide more engineering information such as post–fire conduction (which may drain 
flight battery). 
E   Process–Product: analyze – data 

 Understand how circuits are typically designed and tested before inventing novel approaches. 
G   People – Process - Product: understand – design – circuits 

 Qualify pyro devices by conducting lot acceptance testing. 
E   Process–Product: qualify – devices 

 Review the Pyroinitiator User's Guide published by NASA (JSC–28596A). 
E   Process–Product: review – guide 

 
83 Put Critical Analyses Under Configuration Control 

 Do not assume the first, easiest explanation is the correct one. 
B   Process–Process: assume – explanation 

 Refrain from using check–valves as sole means for isolation, as they can chatter or leak (the check–valve design and assembly 
process on this launcher was particularly prone to seize in the open position). See Check–Valve Reliability in Aerospace 
Applications, NASA Preferred Reliability Practice No. PD–ED–1267, for additional information. 
E   Process–Product: design – valves 
B   Process–Process: design – assembly 
C   Product–Product: valve – launcher 

 The failure cause was found in out–of–family data from successful flights between the two failures. Notice that a process 
change, chosen to reduce development costing, chilled the engine so much that ingressing air could freeze. 
E   Process–Product: flights – data 
B   Process–Process: flights – change – development – costing 

 
84 Check Start–up Circuit Behavior, Particularly at Low Temperatures 

 Use fault–tolerance circuits to protect upstream assets, not load units. Better yet, use dual–level current limiters to protect 
load units during ground tests. But for flight, protect only the source circuits. 
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C   Product–Product: circuits – assets – units 
E   Process–Product: tests – circuits 
B   Process–Process: tests – flight 

 Redesign fault–tolerance circuits when the load units have been substantially altered. 
B   Process–Process: redesign – alter 
E   Process–Product: redesign – circuits 
C   Product–Product: circuits – units 

 The multiplex chips draw 0.25 mA during operation, but as much as 5 mA during cold power up. 
E   Product–Process: chips – operation 

 When the current draw exceeds the power source's capability, the unit would continue trying to reboot. The primary computer 
timed out; its back–up finally succeeded in booting after the chips warmed up. 
E   Process–Product: reboot – unit 
C   Product–Product: unit – computer – chips 

 
85 Systems and Software Engineering Should Actively Coordinate 

 Test the specific configuration that will be flown. 
B   Process–Process: test – configuration – flown 

 Conduct tests and reviews to validate that the requirements are met, rather than that the drawings are correctly implemented. 
E   Process–Product: test, review – requirements*, drawings 
B   Process–Process: test – review 
C   Product–Product: requirements* – drawings 

 Actively involve systems engineers in software development activities, and formally control all system (including software) 
interfaces. 
G   People – Process - Product: engineers – development – software 
C   Product–Product: software – system 

 
86 Hand–Over Logic Tree Must Be Unambiguous 

 Conduct redundancy switching analysis to ensure a fail–safe transfer between multiple, or redundant, controllers. Postulate all 
credible failure paths (such as part failure, start–up transients, latch–up, overvoltage, and EMI) and determine the effect on 
the switching process. Make sure glitches in one unit will not propagate across interfaces. 
B   Process–Process: analysis – make sure 
E   Process–Product: analysis – controllers; make sure – unit, interfaces 
C   Product–Product: controllers – switch – unit – interfaces  

 Guard against radio frequency (RF) interference from multiple sources. 
C   Product–Product: interference* – sources  

 A study of missiles converted for suborbital or space launches found that the largest cause of failure was electromagnetic 
interference (EMI). 
B   Process–Process: study – launches 
E   Process–Product: launches – missiles 
C   Product–Product: missiles – EMI* 

 
87 Avoid Repeating Other People's Mistakes 

 Study past failures that involved similar technologies and implement appropriate corrective actions. 
E   Process–Product: study – technologies 

 Ensure subcontractors discuss relevant lessons with the prime contractor. 
A   People–People: subcontractor – prime contractor 

 As a rocket ascends, decreasing atmospheric pressure causes its flame to spread out. The designers of this failed launcher 
conducted static firings, but did not run sufficient computational fluid dynamics modeling. Thus, they did not anticipate the 
conflagration or the need to protect the cable. 
G   People – Process - Product: designers – modeling – rocket 
C   Product–Product: rocket – cable 
B   Process–Process: modeling – configuration 
E   Process–Product: configuration – cable 

 
88 Verify Each Operation Step 

 Implement a discrete verification step for each critical task. 
B   Process–Process: verification – task 

 Require positive confirmation before hazardous commands can be acted upon. 
B   Process–Process: confirm – commands 

 Do not deviate from written procedures. 
E   Process–Product: deviate – procedures* 

 Handle space hardware carefully. 
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E   Process–Product: handle – hardware 

 As a thunderstorm approached a launch pad, workers draped a rain shield over a satellite being processed in the White Room. 
The shield consisted of overlapping strips of waterproof cloth, secured with adhesive tapes. The installation instructions stated, 
"ensure both top and bottom sides of seam are taped." Nonetheless, the lower side was neglected, nor was there verification. 
G   People – Process - Product: workers – draped – satellite 
C   Product–Product: satellite – side – shield – cloth – tapes 
B   Process–Process: installation – verification 
E   Process–Product: installation – tape; verification – side 

 Rainwater poured through the building's leaks. The weak rain shield collapsed, drenching the satellite. Launch had to be 
delayed for years. 
C   Product–Product: shield – satellite 
E   Process–Product: launch – satellite 
B   Process–Process: launch – delay 

 
89 Prevent Hardware Fratricide 

 Ensure the neighboring units survive after the primary device operates. 
E   Process–Product: ensure – units, device 
C   Product–Product: units – device 

 Qualify ordnance devices in their operational environment. 
B   Process–Process: qualify – operation 
E   Process–Product: qualify – devices  

 A review of a previous mission revealed that several non–critical pins had disengaged. Unfortunately, these warning signs were 
not heeded and the connectors were not redesigned. 
B   Process–Process: review – mission – redesigned 
E   Process–Product: review – pins, signs, connectors 
C   Product–Product: pins – signs – connectors 

 A launcher used shaped charges to separate the stages. The initiator on one end fired first, disabling the other end of the 
charge and preventing the structure underneath the damaged initiator from tearing apart. The vehicle jackknifed. 
C   Product–Product: launcher – chargers – initiator – structure – vehicle 

 
90 Account for All Loose Materials 

 Make sure loose, non–serialized materials (such as wipe cloth) used during assembly are carefully accounted for. 
E   Process–Product: assembly – materials 
B   Process–Process: assembly – accounted 

 Correct the root cause of in–Process anomalies. 
B   Process–Process: correct – root cause 

 Keep accurate records of all "non-flight" installations. 
B   Process–Process: keep – record – installations 

 Take photos frequently during assembly. 
B   Process–Process: photo – assembly 

 Design hardware to minimize areas that cannot be easily inspected, and avoid the use of potential contaminants whenever 
possible. 
E   Process–Product: design – hardware 
C   Product–Product: hardware – contaminants* 
B   Process–Process: design – inspected 

 Keep hardware closed when access is not needed. 
E   Product–Process: hardware – closed 

 Review out–of–flow processes to ensure no steps are bypassed. 
B   Process–Process: review – bypass 

 Debris contamination spoiled five foreign launches between 1990 and 1999, including several caused by rags clogging 
propulsion lines. 
E   Process–Product: launches – rags 
C   Product–Product: rags – lines 

 Debris such as paper clips left in RF cavities repeatedly caused test failures on a satellite program. The contractor finally 
developed an electromagnetic probe to sweep all cavities before they were sealed. 
E   Process–Product: test – satellite 
G   People – Process - Product: contractor – develop – probe 
B   Process–Process: develop – test 

 A jet engine contractor suffered several failures caused by bolts or tools being left inside test units. The management 
subsequently required an inspector to go inside the inlet to check for debris using a flashlight. Right after the new procedure 
was implemented, the engine blew up. The flashlight was left behind. (From "Augustine's Laws.") 
G   People – Process - Product: contractor – test – units; inspector – check – flashlight 
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C   Product–Product: bolts – tools – units 
 
91 Ensure Critical Systems Are Tolerant of Transient Power Loss 

 Ensure the onboard computer retains "most recent state" information so that if a glitch causes the loss of "present state" data, 
the vehicle can revert to a survivable configuration. 
E   Process–Product: ensure – computer 
B   Process–Process: ensure – configuration 
C   Product–Product: computer – data 

 Anticipate wiring problems, and provide redundant power sources to critical systems, including lock–in power circuits to 
prevent hardware reset. 
C   Product–Product: wiring – sources – systems – circuits – hardware  

 Recognize the need to address weaknesses in non-propulsive systems. 
E   Process–Product: recognize – weaknesses* 
C   Product–Product: weaknesses* – systems 

 After this incident, the contractor redesigned the 30–year old control electronics to provide redundant power and guidance. A 
sister launch vehicle program, however, did not make a similar change. 
G   People – Process - Product: contractor – redesigned – electronics 
D   People–Process: sister – change 

 Years later, the second program suffered a failure. Apparently, a defective power cable shorted intermittently, causing the 
guidance computer to reset and the inertial measurement unit to lose reference. 
C   Product–Product: cable – computer – unit 

 The launcher had miles of wires. Forty–four repairs had been made on this particular vehicle alone. In retrospect, it was clearly 
impossible to inspect out every wiring defect, and the decision not to provide redundant power proved costly. 
C   Product–Product: launcher – wires – vehicle 
E   Process–Product: repairs – vehicle 
B   Process–Process: repairs – inspect – costly 

 Cabling defects led to the most costly unmanned launch failure 
E   Process–Product: launch – cabling 

 
92 Rigorously Determine the Root Causes of Test Failures 

 New technologies require rigorous qualification, analysis of design changes, and a thorough understanding of failure modes. 
E   Product–Process: technologies – qualification, analysis, design, changes 
B   Process–Process: qualification – analysis – design – changes 

 Audit a vendor's manufacturing process, conduct destructive physical analysis of sample parts, and ascertain the root causes of 
all anomalies. 
G   People – Process - Product: vendor – manufacturing – parts 
B   Process–Process: manufacturing – analysis – audit 
E   Process–Product: analysis – parts 

 Review the materials and processes for each new application drawing. 
E   Process–Product: review – materials 
C   Product–Product: materials – drawings 

 Guard against known materials incompatibilities (gold/tin intermetallics can embrittle solder joints, for example). 
E   Process–Product: guard – materials 

 
93 Always Ascertain the Direction of Current Flow 

 Make sure that engineers understand how the system or component should function during test. 
G   People – Process - Product: engineers – make sure – system, component 
B   Process–Process: make sure – test 
C   Product–Product: system – component 
E   Process–Product: test – system 

 Thoroughly verify interfaces of subcontracted items, particularly when the suppliers use different engineering conventions. 
G   People – Process - Product: subcontract – verify – items 
A   People–People: subcontract – suppliers 
F   People–Product: suppliers – conventions* 

 Use an engineering model to verify interfaces early. 
B   Process–Process: model – verify 

 A preflight check found two hardware modules wired in the opposite polarity. Both subcontractors reversed their cables. The 
launch failed. 
E   Process–Product: preflight – hardware 
C   Product–Product: hardware – modules – polarity* 
G   People – Process - Product: subcontractors – cable – launch 
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94 Provide Debug Features in Flight Software to Assist Anomaly Resolution 

 Ensure that commercial software, especially the operating system, allows access to internal information and is compatible with 
development debug tools. 
C   Product–Product: software, system, information 
E   Process–Product: development – software 

 Test for off–nominal conditions, both "better" and "worse" than expected (for example, at higher throughput rate), to see if 
the system misbehaves. 
E   Process–Product: test – conditions* 
C   Product–Product: system – conditions* 

 Leave debug capabilities embedded in the operational system. 
E   Process–Product: debug – system 

 Shared functions must be thoroughly tested, especially for timing. 
B   Process–Process: tested – functions 

 Because the bus and instruments share the processor, job allocation is vital. The highest priority is given to data management, 
followed by bus tasks and by science activities. If data management tasks cannot complete within the watchdog's 125 
millisecond cycle, an anomaly is assumed and the computer is reset. 
C   Product–Product: instruments – processor – data – computer 

 Data from the bus and payloads flow through a 1553 data bus, but one instrument is processed directly. 
C   Product–Product: data – payload – instrument 

 That sensor shares a software function with the transaction manager–not a prudent design but normally not a problem. 
C   Product–Product: sensor – software 
E   Process–Product: design – software 

 Turning on "priority inheritance" options for that particular thread solves this problem. This option is not normally used as 
default due to performance concerns. 
B   Process–Process: options – threads 
E   Process–Product: options – performance* 

 
95 Ensure Heritage Designs Can Operate in the New Application Environment 

 Avoid relying on short–term tests (days to months) to confirm long–term reliability. 
B   Process–Process: test – confirm – reliability 

 Audit vendor material lists to ensure completeness. 
G   People – Process - Product: vendor – audit – material 

 Account for vapor diffusion in propulsion subsystem design. 
B   Process–Process: account – design 
E   Process–Product: design – subsystem 

 
96 Tests Must Independently Verify Development Results 

 Use simple tools to crosscheck elaborate tests. 
E   Process–Product: crosscheck – tools 

 Scrutinize test equipment, analysis, or algorithms reused from design or manufacturing for possible single–Point failure. 
E   Process–Product: test – equipment, algorithms 
B   Process–Process: analysis – reuse – design – manufacturing 

 Missing coating near the cap aperture caused the operator to aim the light at the cap instead of at the rod. 
G   People – Process - Product: operator – aim – cap 
C   Product–Product: cap – rod 

 The mis–focusing prevented the metering rod from reaching the lens, but the technicians simply extended the rod by inserting 
a few washers. 
G   People – Process - Product: technicians – extended – lens 
C   Product–Product: lens – rod – washers 

 That in itself should have alerted people, because clearly there should not be a need for any unexpected washers to be added, 
said the investigation board. 
G   People – Process - Product: people – need – washers 
A   People–People: people – board 
B   Process–Process: need – investigation 

 
97 Control Hardware and Software Configurations Before, During, and After Tests 

 Always ascertain G&C actuator phasing. 
E   Process–Product: ascertain – actuator 

 Ensure domain engineers own all aspects of their subsystems. 
G   People – Process - Product: engineers – own – subsystems 

 Conduct end–to–end testing in the flight configuration. 
B   Process–Process: test – flight – configuration 
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 Take plenty of photographs during assembly. 
B   Process–Process: photography – assembly 

 Document G&C subsystem–level alignment. See Guideline GD–ED–2211 from NASA Technical Memorandum 4322A, for 
example. 
E   Process–Product: document – subsystem 
C   Product–Product: subsystem – guideline* 

 
98 Guard Against Post–Firing Conduction of Pyro Initiators 

 Protect firing circuits against sneak currents and line–to–ground shorts. 
E   Process–Product: protect – circuits 

 Components such as step motors and pyro circuits that experience sudden current changes should be isolated from all other 
current–carrying circuits including electrical power, electrical control, RF transmission lines, and monitoring circuitry. For 
additional information, see Electromagnetic Interference Analysis of Circuit Transients, NASA Preferred Reliability Practice No. 
PD–AP–1308, for example. 
C   Product–Product: components – motors – circuits – electrical – lines  

 Check circuit designs against Electroexplosive Subsystem Safety Requirements and Test Methods for Space Systems (MIL–STD–
1576), NASA Standard Initiator User's Guide (JSC–28596A), and Electrical Grounding Architecture for Unmanned Spacecraft 
(NASA–HDBK–4001). 
E   Process–Product: check – circuit 
B   Process–Process: check – design 

 Post–fire plasma shorts can drain batteries. See Journal of Spacecraft and Rockets, 36, 586–590 (1999). 
C   Product–Product: plasma – batteries  

 Drive elements can be disabled by residual current, and should be inspected after ground live tests. In one case, an inspection 
found a damaged fusing resistor, which would have prevented in–flight firing. Between 3% and 5% of firings result in. 
conduction. 
C   Product–Product: elements – resistor 
E   Process–Product: inspection – resistor 
B   Process–Process: inspection – in–flight 

 
99 Have the Model's Originator Check the Analysis 

 Double check all analysis models, assumptions, methods, and predictions. 
B   Process–Process: check – analysis – models 

 Develop a rigorous process for using experience as a basis for accepting further designs and equipment. 
G   People – Process - Product: experience – develop – equipment 
B   Process–Process: develop – design 

 Have the original analyst review final product. 
G   People – Process - Product: analyst – review – product 

 Make sure key subcontractors accept how their product is being used. 
G   People – Process - Product: subcontractor – accept – product 

 
100 Make Sure Safety Mechanisms Are Truly Independent 

 Ensure safing mechanisms will prevent one design error from causing a cascade of irreversible failures. In this case, one error 
could have activated all the heaters, and the solar arrays might have been deployed prematurely. 
C   Product–Product: mechanisms* – heartes – solar arrays 
E   Process–Product: design – mechanisms* 
B   Process–Process: design – deployed 

 Check for failure mechanisms during extended operation even if that is not the intended application. If prolonged operation 
leads to catastrophic failure, provide circuit interrupts, time–out protection, or a graceful degradation mechanism. 
E   Process–Product: check – mechanisms* 
B   Process–Process: check – operation 
C   Product–Product: mechanisms* – circuit 

 Review special design requirements for FPGAs. 
B   Process–Process: review – design 
E   Process–Product: design – requirements* 
C   Product–Product: requirements* – FPGAs 
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Appendix B: SI Element Coding Sheets 

Table 11. People SI Element Coding Sheet 

Original Concept PR # - LL # Coded Concept 

Aerospace 9-2, 20-4 stakeholder 

agency 76-4 developer 

analysts 26-4, 99-3 developer 

approved 25-2 acquirer 

assemblers 65-3 developer 

audience 59-4 acquirer 

authorities 40-2 stakeholder 

board 96-5 acquirer 

builders 4-2 developer 

buyers 5-2 acquirer 

contractor(s) 5-2, 11-8, 14-3, 23-3, 33-3, 37-2, 87-2, 11-4, 11-6, 14-3, 20-5, 90-9, 90-10, 91-4 developer 

controllers 67-1 operator 

cross-program 50-2 developer 

decision 23-5, 23-4 acquirer 

designers 23-6, 26-1, 87-3, 81-1 developer 

doubt 38-3 developer 

engineer(s) 12-2, 17-1, 49-2, 2-1, 4-1, 12-3, 16-1, 17-1, 49-4, 85-3, 93-1, 97-2 developer 

experiences 26-5, 99-2 developer 

human error 3-5, 32-3, 43-4, 51-2, 51-3 developer 

independent 3-3, 80-2 stakeholder 

inspector 90-10 developer 

knowledge 50-3 developer 

knowledge 67-2 operator 

mistakes 34-2 operator 

MRB 6-2 acquirer 

NASA 21-5, 55-4 stakeholder 

one 3-2 developer 

organization(s) 2-4, 50-2, 11-3, 2-6, 76-2 developer 

other 2-4 developer 

overall 3-3 acquirer 

overlook 80-1 developer 

ownership 3-3 operator 

partners 76-4 supplier 

people 96-5 developer 

personnel 23-5, 64-2, 29-1, 47-1, 54-1 developer 

personnel 17-5 operator 

planners 5-3 developer 

program 67-3 developer 

program manager 5-4 acquirer 

program office 11-8, 37-2 acquirer 

program(s) 26-4, 23-3, 2-2 acquirer 

programmer 43-5 developer 

public 40-2 stakeholder 

resources 23-5 developer 

satellite operators 17-1 operator 

side 11-3 developer 

sister 91-4 developer 

space business 3-5 acquirer 

staff 29-2 developer 

subcontractor(s) 5-4, 87-2, 93-2, 93-4, 99-4 developer 

system integrator 11-8 developer 

team 12-2, 61-3 developer 

technician(s) 4-5, 96-4 developer 
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Original Concept PR # - LL # Coded Concept 

teleconference 59-4 developer 

think 79-3 developer 

understand 38-2, 40-1, 82-4, 76-5, 65-2, 72-3 developer 

vendor 54-6, 80-5, 95-2, 92-2 supplier 

vigilant 52-3 developer 

workers 88-5 developer 

 

Table 12. Process SI Element Coding Sheet 

Original Concept PR # - LL # Coded Concept 

accept - any variation 7-3, 99-4 evaluate 

account 95-3, 90-1 manage 

add 30-2 design 

agree 76-2 manage 

aim 96-3 manage 

allow 63-3, 28-2 design 

alter - any variation 80-5, 45-2, 84-2, 80-5 implement 

analysis - any variation 18-2, 2-3, 2-2, 20-4, 26-1, 48-3, 70-1, 81-2, 86-1, 96-2, 16-2, 99-1, 47-2, 92-2, 26-2, 92-
1, 66-2, 70-2, 13-5, 59-2, 38-4, 13-2, 11-8, 16-2, 56-2, 70-1, 80-4, 86-1, 92-2, 48-2, 62-
1, 82-3, 41-2, 13-5, 59-2, 44-4, 21-4, 92-1, 20-4 

define 

anomalies 65-1 deploy 

anticipate 28-1 manage 

applied 43-5 design 

archive 57-3 manage 

ascertain 56-3, 53-2, 97-1 evaluate 

assemble - any variation 47-1, 61-2, 90-1, 83-2, 90-4, 97-4, 63-2, 61-2, 78-4, 90-1, 47-1 implement 

assume 83-1 define 

audit 95-2, 92-2 evaluate 

automatic 47-3, 43-4 design 

avail 23-5 manage 

avoid 15-1, 19-5, 32-2, 17-6, 78-3 manage 

back-up 39-3 deploy 

baked 51-7 evaluate 

balanced 27-1 design 

bar coding 51-1 manage 

bound 76-3 define 

braze 15-1 implement 

budget - link 16-2, 46-1 design 

build - any variation 64-1, 15-2, 4-5, 75-2 implement 

bypass 90-7 design 

came from 51-5 define 

chamfering 69-4 implement 

change - any variation 25-2, 25-3, 83-3, 48-3, 38-4, 39-6, 33-4, 70-3, 48-1, 73-2, 79-2, 70-1, 28-3, 92-1, 25-3, 
30-3, 73-2, 79-2, 70-1, 45-1, 22-4 

implement 

check 15-3, 38-4, 61-1, 66-4, 76-1, 79-2, 98-3, 99-1, 100-2, 39-6, 15-2, 43-3, 60-4, 64-6, 66-4, 
76-1, 82-1, 98-3, 100-2, 96-1, 24-1, 15-3, 90-10, 24-5 

evaluate 

clean - any variation 21-2, 45-5, 14-5, 45-4 deploy 

closed 90-6 deploy 

coating - any variation 5-5, 47-5 deploy 

collect - any variation 46-4, 46-3 manage 

combine 38-5 design 

commands 88-2 deploy 

communicate 33-3 manage 

conduct 69-1 manage 

configure - any variation 39-5, 91-1, 60-2, 87-3, 7-2, 42-4, 85-1, 97-3, 39-5, 87-3, 53-1, 16-3, 7-2 manage 

confirm 88-2, 95-1 evaluate 

consider 59-1, 65-1 manage 
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Original Concept PR # - LL # Coded Concept 

control 16-1, 34-3 manage 

correct - any variation 64-1, 44-1, 34-2, 90-2 implement 

corrosion 45-5 deploy 

cost - any variation 83-3, 37-4, 91-6, 23-4, 2-6 manage 

cycling 79-1 evaluate 

damage 28-4, 41-3, 17-3, 49-3 deploy 

debug 94-3 evaluate 

delay 88-6 deploy 

delivery 37-4 manage 

deploy - any variation 100-1, 53-4, 63-1, 20-4, 9-4 deploy 

design - any variation 71-1, 91-4, 84-2, 89-3 design 

detect 28-5 evaluate 

determine 4-1, 44-1 define 

develop - any variation 3-1, 13-5, 59-2, 74-2, 90-9, 99-2, 25-2, 1-3, 60-2, 80-3, 83-3, 16-1, 73-2, 94-1, 68-1, 23-
1, 3-1, 85-3 

implement 

deviate - any variation 88-3, 60-1 implement 

diagnostic 31-2 evaluate 

disassembly 54-5 implement 

discover 37-3 define 

display 59-3 deploy 

document 76-2, 22-1, 32-4, 80-3, 97-5, 26-4 manage 

draped 88-5 deploy 

effects 45-2 deploy 

emission 40-4, 40-3 deploy 

ensure 91-1, 89-1 evaluate 

epoxy 28-4 implement 

estimation 11-2 define 

evaluate - any variation 19-3, 41-1, 39-1 evaluate 

explain 83-1, 39-1 define 

extended 96-4 implement 

fabrication 31-1 implement 

facilities 54-1 deploy 

fail-safe 32-3 design 

failure 43-5 deploy 

field 22-1 deploy 

firing 14-2 evaluate 

fix 12-6 implement 

flexibility 50-1 design 

flight - any variation 76-1, 39-5, 33-4, 83-3, 15-4, 73-1, 44-6, 59-4, 69-2, 14-1, 72-1, 74-3, 97-3, 84-1, 11-4, 
11-7, 72-3, 73-1, 65-4, 4-4, 4-5, 93-4, 98-5 

deploy 

flow - any variation 12-4, 5-2, 12-2, 85-1 define 

follow 54-1 deploy 

functions 94-1 design 

fund - any variation 11-8 manage 

guard 92-4 deploy 

handle - any variation 30-1, 88-4, 5-3, 9-2, 28-1, 35-2, 41-3, 57-2, 75-1 deploy 

health 29-3 deploy 

heeded 80-5 deploy 

housekeeping 46-5 deploy 

impacts 42-2 deploy 

implementation 26-1 implement 

increments 35-4 manage 

inflicting 79-3 design 

initialization 61-1 deploy 

inspect - any variation 61-2, 66-4, 47-2, 54-5, 90-5, 5-2, 19-2, 98-5, 91-6, 66-4, 47-4, 98-5, 19-2, 28-2, 26-1, 
81-1 

evaluate 

install - any variation 64-5, 88-5, 64-3, 61-1, 90-3, 56-5. 88-5 deploy 

investigate 96-5, 55-4 define 

keep 90-3 deploy 
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Original Concept PR # - LL # Coded Concept 

label 68-2 manage 

launch - any variation 44-6, 63-1, 59-4, 88-6, 15-3, 14-5, 57-5, 86-3, 15-2, 59-5, 62-3, 62-4, 66-1, 67-1, 88-6, 
91-7, 86-3, 90-8, 1-4 

deploy 

lifecycle 37-1 manage 

looked 51-5 define 

maintain - any variation 15-4, 54-5, 24-1, 37-2 deploy 

make sure 86-1, 79-1, 93-1 evaluate 

manage - any variation 47-3, 60-2 manage 

maneuvers 27-4 deploy 

manufacture - any variation 92-2, 96-2, 57-3, 22-1, 41-3, 6-1, 55-3 implement 

mechanism 54-2, 44-3 implement 

migration 27-2 deploy 

mission 67-4, 25-1, 65-2, 73-1, 2-1, 89-3, 33-2, 65-5, 73-2 deploy 

mitigate 13-3, 36-3 manage 

mixed-up 51-4 deploy 

mode  38-1 deploy 

model - any variation 61-3, 67-3, 2-1, 2-2, 2-5, 7-2, 14-1, 26-2, 26-3, 36-2, 37-3, 43-2, 52-1, 87-3, 93-3, 99-1 evaluate 

modification 41-1 implement 

need 96-5 deploy 

observe 67-2 define 

operation - any variation 3-1, 1-2, 9-1, 89-2, 18-5, 100-2, 21-1, 74-1, 38-1, 23-2, 63-1, 54-6, 29-4, 11-1, 57-1, 63-
2, 39-6, 23-2, 29-4, 53-3, 25-4, 18-3, 84-3 

deploy 

options 94-8 manage 

orienting 17-3 deploy 

overlook 51-3 define 

own 97-2 evaluate 

packaging 47-2 deploy 

photo - any variation 90-4, 97-4 implement 

place 27-4 design 

plan - any variation 76-4, 56-1, 74-2, 60-3, 17-2, 40-2 manage 

prevent 54-2 design 

production 51-1  implement 

profiles 31-2 design 

protect 21-2, 18-1 deploy 

pumped 51-7 evaluate 

pursue 65-6 design 

qualify - any variation 7-3, 92-1, 89-2, 14-2, 4-3, 28-3, 82-5, 89-2, 92-1, 3-1, 18-7, 1-3, 4-3 evaluate 

reboot - any variation 84-4, 17-4 deploy 

receive 67-1 deploy 

recognize 91-3 define 

record 90-3, 64-3 manage 

reduce 11-4 design 

redundancy 18-1, 54-4 design 

re-examine 18-4 evaluate 

reliability - any variation 96-3, 18-2, 18-7, 47-1, 95-1, 46-3 design 

removal 57-2 deploy 

repair - any variation 15-2, 6-1, 32-5, 91-6, 6-3 implement 

replace 14-2, 14-3 implement 

reprogrammability 50-1 design 

rerun 12-6 evaluate 

resolution 2-3 implement 

retention 21-6 design 

retrofit 57-5 implement 

reuse - any variation 96-2, 18-4, 23-3 design 

review - any variation 6-2, 12-4, 16-1, 42-2, 54-1, 66-2, 89-3, 90-7, 100-3, 5-4, 16-1, 17-4, 23-6, 76-4, 99-3 evaluate 

rework 32-5 implement 

root - any variation 34-2, 90-2, 32-4, 55-1 define 

safety 49-2, 54-1, 29-3, 5-4, 28-2 design 

schedule - any variation 20-5, 46-5, 37-4, 50-5 manage 
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Original Concept PR # - LL # Coded Concept 

screened 22-2 evaluate 

search 55-1 define 

service 54-6 deploy 

simplify 63-1 design 

simulate - any variation 36-2, 7-2, 14-1, 43-2, 29-1, 7-2 evaluate 

solve 46-4 deploy 

space - any variation 8-1, 8-2, 10-1, 20-5, 42-1, 42-2, 49-5 deploy 

specify 73-3 design 

stages 33-2, 65-3 deploy 

stating 76-5 manage 

stiction 24-6 deploy 

stops 65-5 deploy 

store - any variation 5-3, 9-1, 9-2, 21-1, 21-6, 21-7, 22-1, 75-2, 88-5, 90-3 deploy 

stretching 52-3 manage 

study 69-2, 87-1, 86-3 define 

suitability 18-4 design 

support 2-3, 74-2, 13-1, 74-2 deploy 

sustain 38-3 deploy 

task 32-2, 32-1, 88-1 implement 

test - any variation 23-6, 7-3, 7-2, 12-6, 14-1, 38-1, 39-1, 42-4, 49-2, 49-3, 49-5, 51-4, 60-1, 64-5, 72-1, 74-
1, 74-3, 85-1, 85-2, 95-1, 97-3, 94-4, 18-5, 1-3, 45-4, 84-1, 20-4, 46-1, 5-5, 7-1, 11-1, 
74-2, 52-1, 54-6, 69-2, 45-3, 81-2, 56-3, 20-1, 90-9, 93-1, 70-1, 3-1, 35-4, 26-3, 9-1, 36-
2, 69-1, 28-3, 39-6, 14-2, 25-3, 66-4, 3-2, 7-2, 11-5, 12-4, 12-5, 12-6, 21-3, 24-3, 34-1, 
39-1, 42-4, 49-2, 58-1, 58-2, 58-3, 64-5, 71-2, 71-4, 72-1, 72-2, 74-3, 75-3, 85-2, 90-9, 
93-1, 94-2, 96-2, 18-5, 35-3, 36-2, 73-4, 84-1, 52-1, 54-6, 70-1, 9-1 

evaluate 

thread 94-8 design 

time 45-3 design 

trace 44-2 define 

track 65-1, 12-1 manage 

train 17-1 deploy 

transitions 13-4, 13-5, 38-1 deploy 

trend - any variation 19-3, 19-2, 39-1 define 

troubleshoot 53-4, 44-2, 46-2 evaluate 

turned-off 17-6 deploy 

undetect 36-3 deploy 

update 70-2 implement 

upgrade 57-1 implement 

validate - any variation 2-3, 44-3, 29-4, 73-2 evaluate 

verify - any variation 48-3, 25-3, 20-3, 42-3, 82-2, 93-3, 48-1, 43-2, 63-2, 53-6, 93-2, 32-1, 56-1, 88-1, 88-5, 
32-5, 1-3, 53-6, 63-2, 19-1 

evaluate 

view 70-3 define 

walkthrough 64-2 evaluate 

weld 15-1 implement 

workings 72-3 design 

wrap 65-3 implement 

 

Table 13. Product SI Element Coding Sheet 

Original Concept PR # - LL # Coded Concept 

accessible* 64-6 requirement 

acoustic* 24-3 requirement 

acrylics 51-6 hardware 

actuator  97-1 hardware 

adhesive 51-6 hardware 

aft part 52-4 hardware 

airplane 11-4 system 

algorithm 13-5, 13-3, 43-2, 96-2, 27-3 software 
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Original Concept PR # - LL # Coded Concept 

amplifier 56-4 hardware 

anode 41-5 hardware 

anomalies 65-1 data 

antenna 9-4, 9-3, 42-5 subsystem 

appendages 13-4 hardware 

area 63-3 data 

array 38-5, 40-4, 53-4, 77-2 hardware 

assemblies 21-5 hardware 

assets 84-1 hardware 

attitude* 67-2, 67-3, 80-3 requirement 

axes 21-6, 67-2 hardware 

baffles 52-4 hardware 

base–Plate 64-4 hardware 

batteries 22-1, 22-2, 22-3, 62-3, 98-4, 53-4, 62-2, 30-2, 30-3, 62-4 hardware 

behavior* 39-6, 52-1 requirement 

blankets 51-6, 78-1, 78-2 hardware 

bolts 90-10 hardware 

boom 56-4 hardware 

booster engine 11-4, 32-5 subsystem 

box 58-3, 77-2 hardware 

brushes 41-4, 41-5 hardware 

bus 49-4, 77-2 segment 

cable 10-2, 87-3, 91-5, 51-2, 93-4, 11-1, 91-7 hardware 

cadmium 49-5 hardware 

camera  61-3 hardware 

cap 96-3 hardware 

capacitor 38-5 hardware 

capillary 62-4 hardware 

carrier 11-7 system 

case 6-3 hardware 

catalog items 5-3 data 

cells 22-3, 26-6, 62-3 hardware 

chamber 4-4, 45-4, 49-5, 69-3 hardware 

channels 46-2 hardware 

chargers 89-4 hardware 

chassis 56-5 hardware 

chips 84-3, 84-4 hardware 

chloride 45-5 hardware 

circuit 82-2, 98-3, 19-5, 19-5, 56-5, 63-3, 100-2, 75-3, 82-1, 82-2, 84-2, 24-2, 10-2, 24-2, 71-3, 
72-4, 84-1, 84-2, 91-2, 98-2, 82-4, 84-1, 98-1 

hardware 

clock 79-4 hardware 

cloth 88-5 hardware 

code 35-4, 18-6, 79-2 software 

coils 53-6, 53-5, 72-4 hardware 

commercial parts 5-3 hardware 

component 93-1, 19-6, 49-5, 93-1, 71-2, 30-1, 98-2, 44-3 hardware 

computer 91-1, 30-3, 39-6, 79-4, 84-4, 91-5, 94-5 hardware 

conditions* 9-1, 42-3, 94-2, 44-4,  requirement 

connector 62-4, 64-6, 65-3, 63-2, 68-2, 65-5, 89-3, 11-1, 15-2, 11-1, 15-2, 46-5, 89-3 hardware 

constant 3-3 requirement 

contacts 72-4 hardware 

contamination* 90-5, 16-1, 16-4, 16-3 requirement 

contingencies* 60-3 requirement 

controller 56-4, 86-1, 30-3, 86-1 hardware 

conventions* 93-2 requirement 

core 53-5 hardware 

counter 79-5 hardware 

coverage* 53-3 requirement 

CPU 79-4, 79-5 hardware 
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Original Concept PR # - LL # Coded Concept 

crosslinks 40-3 data 

cryogens 54-3 hardware 

current 53-5 data 

data 24-5, 43-4, 16-2, 29-4, 43-3, 46-3, 46-4, 59-2, 66-4, 19-2, 29-4, 35-2, 43-3, 46-4, 67-3, 
94-5, 94-6, 59-4, 19-3, 35-2, 39-1, 59-3, 82-3, 83-3, 16-2, 46-3, 91-1 

data 

database 43-2, 3-4, 43-1 software 

decimal point 3-7 data 

device 89-1, 82-5, 15-3, 77-1, 89-2 hardware 

dewar 52-4 hardware 

diagrams* 68-1 requirement 

dielectrics 42-1, 42-1 hardware 

dipole 53-5 hardware 

display 3-8, 3-7 hardware 

documentation* 18-4 requirement 

Doppler Shift* 23-6 requirement 

drains 57-2 hardware 

drawings 80-4, 64-1, 85-2, 64-1, 65-3, 85-2, 78-4, 92-3 requirement 

Earth  60-5 data 

edges* 78-3 requirement 

electrical 68-1, 98-2 hardware 

electrode 22-3 hardware 

electrolyte 62-4, 22-4, 62-3 hardware 

electronics 91-4, 11-6, 11-6, 16-4 hardware 

electrostatic* 42-1, 42-5 requirement 

elements 98-5 requirement 

EMI* 86-3 requirement 

engine 45-4 subsystem 

equipment 17-6, 99-2, 41-1, 49-1, 74-2, 74-3, 96-2, 13-1, 46-5, 49-2, 52-1, 54-1, 74-3, 76-1, 49-2, 
62-1, 72-2, 75-1, 76-4 

hardware 

ESD* 10-2, 17-6 requirement 

excitations   13-3 requirement 

facilities* 24-1, 46-5 requirement 

failure mode  12-3, 7-3 software 

failure paths 19-5 software 

filter 38-5, 44-6, 56-4, 56-5, 57-5, 67-3 hardware 

firing 14-2 requirement 

fittings 15-1, 15-3, 15-1, 15-2, 15-3 hardware 

flange 4-5 hardware 

flare 15-4 hardware 

flashlight 90-10 hardware 

fluid lines 15-1 hardware 

force* 24-4, 15-4 requirement 

formal* 73-2 requirement 

formula 43-5 software 

forward part 52-4 hardware 

FPGAs  100-3 hardware 

frequency* 13-2, 13-2, 11-7, 38-5 requirement 

friction* 24-6 requirement 

fuel 57-2 hardware 

fuse 56-5,  19-6 hardware 

gas 27-5-C hardware 

gas inlet 32-5-C hardware 

gimbal 50-4-C hardware 

gold 31-4-C hardware 

goods 78-4-C, 78-4 hardware 

grain 69-3, 69-4 hardware 

ground 39-3 segment 

ground equipment 5-1 hardware 

grounding* 58-3 requirement 
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Original Concept PR # - LL # Coded Concept 

guide  82-6 requirement 

guideline* 97-5 requirement 

gyros 21-6 hardware 

hardware 3-2, 17-3, 23-3, 26-4, 47-1, 72-3, 3-2, 12-6, 16-1, 47-4, 53-1, 57-1, 70-1, 72-1, 72-3, 74-
3, 90-5, 93-4, 21-2, 42-2, 49-3, 90-6, 3-2, 16-1, 18-1, 18-6, 21-2, 21-7, 23-3, 36-2, 36-3, 
53-1, 54-1, 58-2, 70-1, 76-1, 79-3, 79-5, 90-5, 91-2, 93-4, 81-1, 18-1, 58-1, 61-2, 88-4, 
12-6, 72-3, 74-3 

hardware 

harness  58-2, 11-6, 26-6, 58-2,8-3 hardware 

health  39-2 requirement 

heater 100-1, 39-6, 30-3, 39-3, 39-4, 39-3, 30-3 hardware 

heatsink 47-5 hardware 

helium 52-4 hardware 

honeycomb cells 1-4 hardware 

honeycomb structure 1-1, 1-2 hardware 

ICBM 57-5 system 

ICD 11-6, 11-4 requirement 

implications* 65-1 requirement 

indicators* 25-4 requirement 

information 94-1, 59-1 data 

initiator 89-4 hardware 

instability* 33-2, 33-4, 33-1, 27-3, 33-4 requirement 

instruction 32-5, 4-4, 64-1 requirement 

instrument 55-2, 64-7, 94-6, 64-4, 94-5 hardware 

insulator 8-3, 14-4, 42-5 hardware 

interfaces 86-1, 76-2 hardware 

interference* 86-2 requirement 

item 72-3, 93-2, 78-3 hardware 

joint 69-3, 4-5, 15-1 hardware 

latch 44-5 hardware 

launch vehicle 2-5, 1-2, 2-5, 33-3, 33-1, 44-5, 89-4, 91-6, 11-8, 83-2 segment 

layer* 31-3 requirement 

lead 39-5 hardware 

lens 96-4 hardware 

lines 39-4, 98-2, 90-8 hardware 

loads 27-1, 30-2 hardware 

logic path 25-3 software 

loops 27-5 software 

louvers 64-4, 64-6, 64-5 hardware 

lubricant 9-1, 9-3, 9-4, 57-5, 9-2 hardware 

lubrication* 21-2 requirement 

magnet 60-5, 72-4 hardware 

margins* 7-3, 66-1, 11-2, 37-4, 55-3, 66-1 requirement 

Mariner 43-5 system 

mass property* 2-1 requirement 

material 14-2, 95-2, 90-1, 92-3, 14-1, 21-4, 22-2, 10-2, 21-4, 22-2, 45-1, 78-1, 92-3, 78-1, 92-4 hardware 

mechanical* 68-1 requirement 

mechanisms* 100-1, 100-2, 27-3, 100-1, 100-2 requirement 

metal 31-1 hardware 

mismatch* 52-2 requirement 

missiles 86-3 subsystem 

modes 41-2 software 

modules 93-4 software 

moisture* 21-2 requirement 

monitors 39-4 hardware 

motions* 20-2 requirement 

motor 9-4, 50-5, 50-4, 56-4, 98-2 hardware 

mount 47-4 hardware 

needles 60-5 hardware 

nitrogen 52-4 hardware 
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Original Concept PR # - LL # Coded Concept 

nozzle 14-4 hardware 

nozzle skirt 14-3 hardware 

null 40-4 data 

oil 21-1, 21-7, 21-2, 21-6, 21-7 hardware 

orbit* 27-4 requirement 

oscilloscopes 46-3 hardware 

overlays 34-3 hardware 

oxidation* 21-3 requirement 

parameter* 79-1 requirement 

particles* 17-3 requirement 

parts 92-2, 66-4, 5-4, 21-3, 21-3, 92-2, 8-1 hardware 

payload 49-4, 94-6 segment 

performance* 23-4, 94-8 requirement 

pin 9-3, 89-3 hardware 

pipes 45-1, 30-3 hardware 

plasma 98-4 hardware 

plate 47-4 hardware 

plug 32-5 hardware 

Plug–and–Play* 62-2 requirement 

polarity* 53-2, 53-5, 93-4 requirement 

poles 60-5 data 

port 44-6, 57-4, 46-4 hardware 

power supplies 38-4 hardware 

power* 37-2, 44-2 requirement 

precision* 48-2, 48-4 requirement 

probe 90-9, 23-6 hardware 

problems  51-3, 80-1 data 

procedure* 32-2, 76-1, 2-3, 17-4, 54-1, 29-4, 54-1, 63-1, 76-1, 88-3, 17-4, 29-4, 54-1 requirement 

processor 50-5, 35-2, 36-4, 94-5 hardware 

product  99-3, 99-4, 26-1 subsystem 

project stores 5-3 software 

propellant 27-2, 27-3, 27-4 hardware 

proprietary data 2-6, 23-3 data 

protection* 35-2, 30-2, 34-1, 35-1, 36-3 requirement 

pulses 36-4 data 

pyros 7-1 hardware 

radar 48-4 hardware 

radiation 14-6 requirement 

radiators 16-4 hardware 

rags 90-8 hardware 

range gate 48-4 hardware 

rate 14-2 requirement 

reactions* 22-4 requirement 

regulator 32-5, 27-4, 32-5, 27-4 hardware 

relay 44-5, 44-6, 77-2, 71-1, 72-4 hardware 

reports  69-2 requirement 

requirement* 4-3, 12-1, 12-4, 12-5, 12-1, 12-1, 12-2, 12-4, 33-3, 76-3, 23-1, 5-2, 23-6, 60-2, 19-1, 4-1, 
4-2, 12-2, 40-1, 56-2, 60-2, 67-4, 73-4, 85-2, 100-3, 73-3, 73-4, 85-2 

requirement 

resin 14-3 hardware 

resistor 98-5, 56-5, 19-6 hardware 

resonance 11-5, 11-6 requirement 

ring  41-3, 41-4, 56-4 hardware 

rocket 6-2, 6-3, 14-5, 87-3, 87-3, 6-3 subsystem 

rod 96-4, 96-3 hardware 

routine 36-4 software 

rubber spacer 14-6 hardware 

safety* 65-2 requirement 

satellite 39-2,8-2,11-7,30-1,67-1,20-4,51-7,11-5,11-8,17-3,17-6,24-3,30-1,30-2,33-1,33-3,39-
2,44-5,51-7,53-4,64-4,67-1,67-2,67-3,,73-1,88-5,88-6,20-4,88-5,17-3,90-9,33-4,65-

segment 
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3,88-6,10-2,27-4,57-5 

scenario*  55-4,36-1 requirement 

screw 32-5,47-4 hardware 

Scud 48-4 system 

seal 15-4,57-5 hardware 

semiconductor 31-1 hardware 

sensor 50-5,44-5,56-4,94-7,67-3 hardware 

separators 22-3 hardware 

shield 81-3,88-5,88-6 hardware 

shielding* 10-2 requirement 

side 88-5, 63-3 data 

signals 44-2,40-4,44-2 data 

signs 89-3,65-6 data 

silicone 51-6,51-7 hardware 

simulator  29-1 subsystem 

sleeves 15-2 hardware 

socket 9-3 hardware 

software 3-2,23-3,25-2,29-1,43-5,12-4,12-6,32-3,35-3,36-2,53-1,60-2,73-2,3-1,18-2,18-4,18-
7,19-4,25-1,43-2,43-5,3-2,12-4,12-6,18-1,18-2,18-3,18-4,18-6,18-6,23-3,29-1,30-3,35-
1,43-5, 43-5,46-5,60-2,68-1,73-1,79-3,79-5,85-3,94-1,94-7,32-3,79-3,85-3,30-3,46-
5,48-1,94-1,94-7,12-2,36-2,53-1 

software 

solar array  23-2 hardware 

solar panels 8-1,14-6,8-1,13-1,13-2,13-1,13-2,13-3,17-3,53-4,44-5,81-3,100-1 hardware 

solvent 14-5 hardware 

source code 3-4,43-1 software 

sources 43-3,91-2,86-2 data 

space environment 17-1 requirement 

space system 1-1 system 

space vehicle 2-5 segment 

space* 20-5,64-7 requirement 

spacecraft 10-1,13-4,29-3,1-2,11-7,13-4,13-5,49-5,49-5,71-4,79-1 segment 

specification* 37-1,11-4,37-1,18-3,18-3,5-4,54-6,73-3 requirement 

spectrum 40-2 data 

speed  11-4 requirement 

stability control 2-1-G requirement 

state–of–the–art  52-3 data 

station 53-3 subsystem 

storm* 17-5,17-2,17-6 requirement 

stress 11-1,8-3 requirement 

strips 72-4 hardware 

structural loads 2-1 requirement 

structure 10-2,89-4,28-2,28-4 subsystem 

subsystem 97-5,12-2,66-3,97-5,95-3,71-4,97-2,17-4,71-4,17-4 subsystem 

sunshield 42-5 hardware 

surfaces 5-5, requirement 

switch 86-1 hardware 

system 93-1,42-4,3-6,11-1,71-1,19-6,36-1,36-3,37-2,49-4,57-4,64-5,71-1,73-4,93-1,94-1,94-
2,49-4,36-3,64-5,93-1,94-3,18-2,18-5,37-1,70-1,71-2,85-3,52-1,57-2,7-1,11-1,41-2,52-
1,57-2,79-3,91-2,91-3 

system 

tables*  77-1 requirement 

tank 27-2,30-3,27-4,30-3,27-5 hardware 

tape 88-5,51-6,65-3,51-5,65-3,51-4,88-5,65-3 hardware 

tape drive 24-6 hardware 

TBD* 76-5, 76-4 requirement 

technology 92-1,87-1,37-4 requirement 

telemetry 67-1 data 

telescopes 17-3 hardware 

temperature 1-3 data 
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thermal* 13-1,24-2 requirement 

thermostat 30-3 hardware 

thermostats 71-1,71-3 hardware 

thread 15-4,32-5 software 

thruster 57-5,17-6,30-3 hardware 

timer 36-4 hardware 

titanium 31-4 hardware 

tolerances* 52-2 requirement 

tools 16-2,90-10,96-1 hardware 

torque* 53-2,53-5,60-4,15-3,15-2 requirement 

torquers 53-6,53-5 hardware 

tracker  80-5 hardware 

transistors 56-5 hardware 

tube 72-4,45-5,45-5 hardware 

tunnel 81-3 hardware 

unit 82-2,84-4,86-1,18-5,36-1,66-3,82-2,84-4,86-1,91-5,18-5,90-10,89-1,64-1,73-3,84-1,89-
1,73-3,57-5,84-2 

hardware 

vacuum* 49-2,1-3 requirement 

valve 57-4,57-4,83-2,54-6,14-5,27-4,39-4,83-2 hardware 

vehicle 67-1,73-1,66-3,66-1,66-3,67-1,73-1,89-4,91-6,91-6 segment 

vent  54-4 hardware 

vessel  54-3,28-1 subsystem 

vibration* 11-8,11-4,11-6,11-8,24-3,24-4,24-3,24-4,11-7 requirement 

voltage* 31-3, 24-6 requirement 

volume* 37-2 requirement 

walls 47-5 hardware 

warm days* 59-5 requirement 

washers 96-5,96-4 hardware 

weaknesses* 91-3 requirement 

weight* 37-2 requirement 

wheels 21-6 hardware 

wires 62-4,78-1,91-6,39-5,91-2,39-5 hardware 
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Appendix C: Traceability Matrix-Model 

Table 14. Traceability Matrix-Model 
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A: People-People 

10 Acquirer-Developer       X X X   X   X   X X X X X   X X X   X 

4 Developer (Launcher)-Developer (Satellite)         X X   X   X   X X X X X   X X X     

3 Developer-Supplier           X   X   X   X X X X X   X X X     

2 Developer (Payload)-Developer (Bus)         X X   X   X   X X X X X   X X X     

1 Acquirer-Stakeholder (Independent)   X   X X X   X   X   X X X X X   X X X   X 

1 Developer (Sub)-Developer (Prime)         X X   X   X   X X X X X   X X X     

1 Developer (System)-Developer (Software)         X X   X   X   X X X X X   X X X     

1 Developer-Developer         X X   X   X   X X X X X   X X X     

1 Developer-Operator       X X X   X   X   X X X X X   X X X     

1 Stakeholder (AFSPC)-Stakeholder (Public)   X   X           X   X X X X X   X X X   X 

25 TOTAL   2   4 8 9   9   10   10 10 10 10 10   10 10 10   3 

B: Process-Process 

26 Evaluate-Deploy                   X   X X X X X   X X X   X 

17 Design-Evaluate           X   X   X   X X X X X   X X X   X 

13 Define-Evaluate       X X X   X   X   X X X X X   X X X   X 

13 Design-Deploy           X   X   X   X X X X X   X X X   X 

13 Evaluate-Evaluate   X   X X X   X   X   X X X X X   X X X   X 

13 Implement-Evaluate                   X   X X X X X   X X X   X 

12 Deploy-Deploy                       X X X X X   X X X   X 
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9 Deploy-Manage                       X X X X X   X X X   X 

8 Evaluate-Manage    X   X X X   X   X   X X X X X   X X X   X 

8 Implement-Deploy                   X   X X X X X   X X X   X 

6 Implement-Manage                   X   X X X X X   X X X   X 

5 Define-Implement       X X X   X   X   X X X X X   X X X   X 

5 Design-Evaluate-Deploy               X   X   X X X X X   X X X   X 

5 Design-Implement               X   X   X X X X X   X X X   X 

5 Design-Manage    X   X X X   X   X   X X X X X   X X X   X 

5 Implement-Evaluate-Deploy                   X   X X X X X   X X X   X 

4 Define-Implement-Evaluate   X   X X X   X   X   X X X X X   X X X   X 

4 Implement-Implement               X   X   X X X X X   X X X   X 

3 Define-Define   X   X X X   X   X   X X X X X   X X X   X 

3 Define-Design       X X X   X   X   X X X X X   X X X   X 

3 Define-Design-Implement   X   X X X   X   X   X X X X X   X X X   X 

2 Define-Deploy       X X X   X   X   X X X X X   X X X   X 

2 Define-Evaluate-Deploy   X   X X X   X   X   X X X X X   X X X   X 

2 Design-Implement-Deploy                   X   X X X X X   X X X   X 

2 Design-Implement-Evaluate-Deploy                   X   X X X X X   X X X   X 

2 Evaluate-Deploy-Manage                   X   X X X X X   X X X   X 

2 Implement-Evaluate-Manage                   X   X X X X X   X X X   X 

2 Manage-Manage    X   X X X   X   X   X X X X X   X X X   X 

1 Define-Design-Evaluate-Deploy                   X   X X X X X   X X X   X 

1 Define-Design-Implement-Evaluate                   X   X X X X X   X X X   X 

1 Define-Implement-Deploy   X   X X X   X   X   X X X X X   X X X   X 

1 Define-Implement-Evaluate-Deploy                   X   X X X X X   X X X   X 



 

118 

    P
h
a
s
e
 0

: 
C

o
n
c
e
p
t 
S

tu
d
ie

s
 

A
lt
e
rn

a
ti
v
e
 S

y
s
te

m
 R

e
v
ie

w
 (

A
S

R
) 

P
h
a
s
e
 A

: 
C

o
n
c
e
p
t 

D
e
v
e
lo

p
m

e
n
t 

In
te

g
ra

te
d
 B

a
s
e
lin

e
 R

e
v
ie

w
 (

IB
R

) 

S
y
s
te

m
 R

e
q
u
ir
e
m

e
n
ts

 R
e
v
ie

w
 (

S
R

R
) 

S
y
s
te

m
 D

e
s
ig

n
 R

e
v
ie

w
 (

S
D

R
) 

P
h
a
s
e
 B

: 
P

re
lim

in
a
ry

 D
e
s
ig

n
 

P
re

lim
in

a
ry

 D
e
s
ig

n
 R

e
v
ie

w
 (

P
D

R
) 

P
h
a
s
e
 C

: 
C

o
m

p
le

te
 D

e
s
ig

n
 

C
ri
ti
c
a
l 
D

e
s
ig

n
 R

e
v
ie

w
 (

C
D

R
) 

P
h
a
s
e
 D

1
: 

F
a

b
ri
c
a
ti
o

n
 &

 I
n
te

g
ra

ti
o
n

 

P
ro

d
u
c
ti
o

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

P
R

R
) 

T
e

s
t 
R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

T
R

R
) 

S
y
s
te

m
 V

e
ri
fi
c
a
ti
o

n
 R

e
v
ie

w
 (

S
V

R
) 

F
u

n
c
ti
o

n
a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

F
C

A
) 

P
h
y
s
ic

a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

P
C

A
) 

P
h
a
s
e
 D

2
: 

F
ie

ld
in

g
 &

 C
h
e
c
k
o
u
t 

M
is

s
io

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

M
R

R
) 

F
lig

h
t 

R
e
a
d
in

e
s
s
 R

e
v
ie

w
 (

F
R

R
) 

L
a
u
n
c
h
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

L
R

R
) 

P
h
a
s
e
 D

3
: 

O
p
e
ra

ti
o

n
s
 &

 D
is

p
o
s
a
l 

P
o
s
t 

F
lig

h
t 
R

e
v
ie

w
 (

P
F

R
) 

1 Define-Manage   X   X X X   X   X   X X X X X   X X X   X 

1 Design-Design   X   X X X   X   X   X X X X X   X X X   X 

1 Design-Implement-Deploy-Manage                   X   X X X X X   X X X   X 

1 Design-Implement-Evaluate                   X   X X X X X   X X X   X 

1 Implement-Deploy-Manage                   X   X X X X X   X X X   X 

1 Implement-Evaluate-Deploy-Manage                   X   X X X X X   X X X   X 

204 TOTAL   11   15 15 17   20   36   38 38 38 38 38   38 38 38   38 

C: Product-Product 

62 Hardware-Hardware               X   X   X X X X X   X X X   X 

38 Hardware-Requirement         X X   X   X   X X X X X   X X X   X 

17 Segment-Hardware           X   X   X   X X X X X   X X X   X 

13 System-Hardware           X   X   X   X X X X X   X X X   X 

12 Hardware-Software               X   X   X X X X X   X X X   X 

9 Hardware-Data               X   X   X X X X X   X X X   X 

7 Segment-Requirement   X   X X X   X   X   X X X X X   X X X   X 

5 Hardware-Software-Requirement         X X   X   X   X X X X X   X X X   X 

5 Requirement-Requirement   X   X X X   X   X   X X X X X   X X X   X 

5 Software-Requirement         X X   X   X   X X X X X   X X X   X 

5 System-Requirement   X   X X X   X   X   X X X X X   X X X   X 

4 Segment-Segment   X   X X X   X   X   X X X X X   X X X   X 

4 Subsystem-Hardware               X   X   X X X X X   X X X   X 

4 Subsystem-Requirement         X X   X   X   X X X X X   X X X   X 

4 System-Software           X   X   X   X X X X X   X X X   X 

3 Data-Requirement   X   X X X   X   X   X X X X X   X X X   X 

3 Segment-Hardware-Data           X   X   X   X X X X X   X X X   X 
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3 Software-Software               X   X   X X X X X   X X X   X 

3 System-Hardware-Requirement         X X   X   X   X X X X X   X X X   X 

2 Hardware-Software-Data               X   X   X X X X X   X X X   X 

2 Segment-Hardware-Requirement         X X   X   X   X X X X X   X X X   X 

2 Segment-Software           X   X   X   X X X X X   X X X   X 

2 Segment-Subsystem-Hardware           X   X   X   X X X X X   X X X   X 

1 Data-Data       X X X   X   X   X X X X X   X X X   X 

1 Hardware-Data-Requirement         X X   X   X   X X X X X   X X X   X 

1 Segment-Subsystem         X X   X   X   X X X X X   X X X   X 

1 Subsystem-Hardware-Requirement           X   X   X   X X X X X   X X X   X 

1 Subsystem-Hardware-Software               X   X   X X X X X   X X X   X 

1 Subsystem-Software               X   X   X X X X X   X X X   X 

1 Subsystem-Software-Requirement         X X   X   X   X X X X X   X X X   X 

1 System-Hardware-Data           X   X   X   X X X X X   X X X   X 

1 System-Hardware-Software           X   X   X   X X X X X   X X X   X 

1 System-Segment   X   X X X   X   X   X X X X X   X X X   X 

1 System-Segment-Hardware           X   X   X   X X X X X   X X X   X 

1 System-Segment-Requirement   X   X X X   X   X   X X X X X   X X X   X 

1 System-Software-Data           X   X   X   X X X X X   X X X   X 

1 System-Subsystem-Requirement           X   X   X   X X X X X   X X X   X 

228 TOTAL   7   8 17 29   37   37   37 37 37 37 37   37 37 37   37 

D: People-Process 

3 Developer-Evaluate               X   X   X X X X X   X X X     

2 Developer-Define         X X   X   X   X X X X X   X X X     

2 Developer-Design           X   X   X   X X X X X   X X X     
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2 Developer-Implement               X   X   X X X X X   X X X   X 

2 Developer-Manage           X   X   X   X X X X X   X X X     

1 Acquirer-Define   X   X X X   X   X   X X X X X   X X X   X 

1 Acquirer-Manage   X   X X X   X   X   X X X X X   X X X   X 

1 Operator-Define   X   X X X                               X 

1 Stakeholder (Independent)-Define   X   X X X                               X 

15 TOTAL   4   4 5 7   7   7   7 7 7 7 7   7 7 7   5 

E: Process-Product 

40 Deploy-Hardware                       X X X X X   X X X   X 

38 Evaluate-Hardware                   X   X X X X X   X X X   X 

24 Design-Hardware           X   X   X   X X X X X   X X X   X 

20 Evaluate-Requirement       X X X   X   X   X X X X X   X X X   X 

10 Design-Requirement         X X   X   X   X X X X X   X X X   X 

10 Implement-Hardware                   X   X X X X X   X X X   X 

10 Manage-Requirement   X   X X X   X   X   X X X X X   X X X   X 

9 Define-Requirement   X   X X X   X   X   X X X X X   X X X   X 

9 Deploy-Requirement       X X X   X   X   X X X X X   X X X   X 

6 Deploy-Segment                       X X X X X   X X X   X 

6 Implement-Requirement       X X X   X   X   X X X X X   X X X   X 

6 Manage-Hardware               X   X   X X X X X   X X X   X 

5 Evaluate-Software               X   X   X X X X X   X X X   X 

5 Evaluate-System   X   X X X   X   X   X X X X X   X X X   X 

4 Deploy-Data                       X X X X X   X X X   X 

4 Design-Software           X   X   X   X X X X X   X X X   X 

4 Evaluate-Data                   X   X X X X X   X X X   X 
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4 Evaluate-Segment   X   X X X   X   X   X X X X X   X X X   X 

4 Implement-Software                   X   X X X X X   X X X   X 

3 Define-Hardware               X   X   X X X X X   X X X   X 

3 Deploy-Software                       X X X X X   X X X   X 

3 Design-Evaluate-Hardware                       X X X X X   X X X   X 

3 Design-Segment       X X X   X   X   X X X X X   X X X   X 

3 Design-System       X X X   X   X   X X X X X   X X X   X 

3 Evaluate-Deploy-Hardware                       X X X X X   X X X   X 

3 Evaluate-Hardware-Software                   X   X X X X X   X X X   X 

2 Define-Data       X X X   X   X   X X X X X   X X X   X 

2 Deploy-Subsystem                       X X X X X   X X X   X 

2 Evaluate-Deploy-Requirement                   X   X X X X X   X X X   X 

2 Evaluate-Hardware-Data                   X   X X X X X   X X X   X 

2 Evaluate-Software-Requirement               X   X   X X X X X   X X X   X 

2 Evaluate-Subsystem         X X   X   X   X X X X X   X X X   X 

2 Manage-Data       X X X   X   X   X X X X X   X X X   X 

1 Define-Data-Requirement       X X X   X   X   X X X X X   X X X   X 

1 Define-Design-Implement-Evaluate-Rqmt                   X   X X X X X   X X X   X 

1 Define-Design-Requirement         X X   X   X   X X X X X   X X X   X 

1 Define-Design-Software           X   X   X   X X X X X   X X X   X 

1 Define-Evaluate-Hardware                   X   X X X X X   X X X   X 

1 Define-Hardware-Requirement           X   X   X   X X X X X   X X X   X 

1 Define-Implement-Data                   X   X X X X X   X X X   X 

1 Define-Implement-Evaluate-Hardware                   X   X X X X X   X X X   X 

1 Define-Implement-Software                   X   X X X X X   X X X   X 
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1 Define-Software               X   X   X X X X X   X X X   X 

1 Deploy-Evaluate-Hardware-Requirement                   X   X X X X X   X X X   X 

1 Deploy-System-Segment-Requirement       X X X   X   X   X X X X X   X X X   X 

1 Design-Data           X   X   X   X X X X X   X X X   X 

1 Design-Deploy-Segment           X   X   X   X X X X X   X X X   X 

1 Design-Deploy-Software                       X X X X X   X X X   X 

1 Design-Evaluate-System-Hardware-Rqmt         X X   X   X   X X X X X   X X X   X 

1 Design-Hardware-Data           X   X   X   X X X X X   X X X   X 

1 Design-Implement-Deploy-Mng-Hardware                       X X X X X   X X X   X 

1 Design-Implement-Hardware                   X   X X X X X   X X X   X 

1 Design-Segment-Requirement       X X X   X   X   X X X X X   X X X   X 

1 Design-Subsystem           X   X   X   X X X X X   X X X   X 

1 Evaluate-Deploy-Data-Requirement                       X X X X X   X X X   X 

1 Evaluate-Deploy-Hardware-Requirement                       X X X X X   X X X   X 

1 Evaluate-Hardware-Requirement         X X   X   X   X X X X X   X X X   X 

1 Evaluate-Manage-Requirement       X X X   X   X   X X X X X   X X X   X 

1 Implement-Evaluate-Hardware-Rqmt                   X   X X X X X   X X X   X 

1 Implement-Evaluate-Software                   X   X X X X X   X X X   X 

1 Implement-Evaluate-Software-Requirement                   X   X X X X X   X X X   X 

1 Implement-Hardware-Requirement                   X   X X X X X   X X X   X 

1 Implement-Segment           X   X   X   X X X X X   X X X   X 

1 Implement-Software-Requirement                   X   X X X X X   X X X   X 

1 Implement-Subsystem           X   X   X   X X X X X   X X X   X 

1 Implement-System         X X   X   X   X X X X X   X X X   X 

1 Manage-Data-Requirement       X X X   X   X   X X X X X   X X X   X 
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1 Manage-Hardware-Software               X   X   X X X X X   X X X   X 

1 Manage-Software               X   X   X X X X X   X X X   X 

1 Manage-Subsystem           X   X   X   X X X X X   X X X   X 

1 Manage-System   X   X X X   X   X   X X X X X   X X X   X 

291 TOTAL   5   17 23 34   41   60   71 71 71 71 71   71 71 71   71 

F: People-Product 

2 Supplier-Requirements               X   X   X X X X X   X X X     

1 Acquirer-Data    X   X X X   X   X   X X X X X   X X X   X 

1 Developer-Data            X   X   X   X X X X X   X X X     

1 Developer-Requirements           X   X   X   X X X X X   X X X     

1 Operator-System   X   X X X   X   X   X X X X X   X X X   X 

1 Stakeholder-Hardware   X   X X         X   X X X X X   X X X   X 

7 TOTAL   3   3 3 4   5   6   6 6 6 6 6   6 6 6   3 

G: People-Process-Product 

7 Developer-Evaluate-Hardware               X   X   X X X X X   X X X   X 

7 Developer-Implement-Hardware               X   X   X X X X X   X X X   X 

4 Developer-Design-Hardware               X   X   X X X X X   X X X   X 

4 Developer-Manage-Requirement       
 

X X   X   X   X X X X X   X X X   X 

3 Developer-Define-Requirement       
 

X X   X   X   X X X X X   X X X   X 

3 Developer-Deploy-Hardware                   X   X X X X X   X X X   X 

3 Developer-Design-Requirement         X X   X   X   X X X X X   X X X   X 

3 Developer-Evaluate-Requirement         X X   X   X   X X X X X   X X X   X 

3 Operator-Deploy-Hardware                       X X X X X   X X X   X 

2 Developer-Deploy-Requirement           X   X   X   X X X X X   X X X   X 
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2 Developer-Design-Software               X   X   X X X X X   X X X   X 

2 Developer-Evaluate-Subsystem               X   X   X X X X X   X X X   X 

2 Developer-Manage-Hardware               X   X   X X X X X   X X X   X 

2 Operator-Deploy-Requirement   X   X           X   X X X X X   X X X   X 

2 Operator-Evaluate-Requirement   X   X           X   X X X X X   X X X   X 

2 Supplier-Implement-Hardware               X   X   X X X X X   X X X   X 

1 Acquirer-Evaluate-Requirement   X   X X X   X   X   X X X X X   X X X   X 

1 Acquirer-Evaluate-Subsystem           X   X   X   X X X X X   X X X   X 

1 Acquirer-Implement-Software               X   X   X X X X X   X X X   X 

1 Acquirer-Manage-Requirement   X   X X X   X   X   X X X X X   X X X   X 

1 Developer-Define-Data       
 

X X   X   X   X X X X X   X X X   X 

1 Developer-Define-Evaluate-Requirement       
 

X X   X   X   X X X X X   X X X   X 

1 Developer-Define-Manage-Requirement       
 

X X   X   X   X X X X X   X X X   X 

1 Developer-Deploy-Segment           X   X   X   X X X X X   X X X   X 

1 Developer-Deploy-Software                   X   X X X X X   X X X   X 

1 Developer-Design-Data           X   X   X   X X X X X   X X X   X 

1 Developer-Design-Hardware-Software               X   X   X X X X X   X X X   X 

1 Developer-Evaluate-Data               X   X   X X X X X   X X X   X 

1 Developer-Evaluate-Hardware-Rqmt           X   X   X   X X X X X   X X X   X 

1 Developer-Evaluate-Hardware-Software               X   X   X X X X X   X X X   X 

1 Developer-Evaluate-Software               X   X   X X X X X   X X X   X 

1 Developer-Evaluate-System         X X   X   X   X X X X X   X X X   X 

1 Developer-Evaluate-System-Hardware           X   X   X   X X X X X   X X X   X 

1 Developer-Implement-Evaluate-Mng-SW               X   X   X X X X X   X X X   X 

1 Developer-Implement-Requirement         X X   X   X   X X X X X   X X X   X 
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1 Developer-Implement-Software               X   X   X X X X X   X X X   X 

1 Developer-Manage-Data       
 

X X   X   X   X X X X X   X X X   X 

1 Developer-Operator-Deploy-Requirement                   X   X X X X X   X X X   X 

1 Operator-Define-Requirement   X   X           X   X X X X X   X X X   X 

1 Operator-Evaluate-Data                   X   X X X X X   X X X   X 

1 Operator-Manage-Hardware                       X X X X X   X X X   X 

1 Operator-Manage-Requirement   X   X X             X X X X X   X X X   X 

1 Stakeholder-Define-Segment   X   X           X   X X X X X   X X X   X 

1 Stakeholder-Deploy-Hardware                       X X X X X   X X X   X 

1 Stakeholder-Evaluate-Requirement   X   X           X   X X X X X   X X X   X 

1 Stakeholder-Manage-Requirement   X   X X             X X X X X   X X X   X 

1 Supplier-Define-Hardware               X   X   X X X X X   X X X   X 

1 Supplier-Evaluate-Hardware               X   X   X X X X X   X X X   X 

1 Supplier-Evaluate-Requirement               X   X   X X X X X   X X X   X 

1 User-Deploy-Data                       X X X X X   X X X   X 

85 TOTAL   9   9 14 18   35   44   50 50 50 50 50   50 50 50   50 
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Table 15. Traceability Matrix for GPS Case Study 
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A: People-People 

10 Acquirer-Developer       X   X   X   X   X     X               

4 Developer (Launcher)-Developer (Satellite)                       X     X               

3 Developer-Supplier       X                                     

2 Developer (Payload)-Developer (Bus)                       X                     

1 Acquirer-Stakeholder (Independent)       X           X   X     X               

1 Developer (Sub)-Developer (Prime)       X X             X     X               

1 Developer (System)-Developer (Software)       X X X                 X               

1 Developer-Developer           X   X   X                         

1 Developer-Operator           X       X                         

1 Stakeholder (AFSPC)-Stakeholder (Public)                                             

25 TOTAL   0   5 2 4   2   4   5 0 0 5 0   0 0 0   0 

B: Process-Process 

26 Evaluate-Deploy                                             

17 Design-Evaluate         X                     X             

13 Define-Evaluate         X X   X   X   X     X               

13 Design-Deploy           X   X             X               

13 Evaluate-Evaluate           X   X                             

13 Implement-Evaluate                                             

12 Deploy-Deploy                                             

9 Deploy-Manage                                             
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8 Evaluate-Manage                        X                     

8 Implement-Deploy                                             

6 Implement-Manage       X   X   X                             

5 Define-Implement       X X         X         X               

5 Design-Evaluate-Deploy       X X         X                         

5 Design-Implement       X   X   X               X             

5 Design-Manage                                X             

5 Implement-Evaluate-Deploy                                             

4 Define-Implement-Evaluate       X       X                             

4 Implement-Implement       X                                     

3 Define-Define       X                                     

3 Define-Design       X X X   X   X   X                     

3 Define-Design-Implement                   X                         

2 Define-Deploy                                             

2 Define-Evaluate-Deploy               X                             

2 Design-Implement-Deploy         X         X                         

2 Design-Implement-Evaluate-Deploy                                             

2 Evaluate-Deploy-Manage                                             

2 Implement-Evaluate-Manage                                             

2 Manage-Manage                                              

1 Define-Design-Evaluate-Deploy                                             

1 Define-Design-Implement-Evaluate                       X                     

1 Define-Implement-Deploy       X       X                             

1 Define-Implement-Evaluate-Deploy                       X                     

1 Define-Manage       X               X     X               
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1 Design-Design       X               X                     

1 Design-Implement-Deploy-Manage                                             

1 Design-Implement-Evaluate         X         X                         

1 Implement-Deploy-Manage                                             

1 Implement-Evaluate-Deploy-Manage                                             

204 TOTAL   0   11 7 6   9   7   7 0 0 4 3   0 0 0   0 

C: Product-Product 

62 Hardware-Hardware       X                                     

38 Hardware-Requirement       X               X       X             

17 Segment-Hardware                   X   X                     

13 System-Hardware           X       X   X                     

12 Hardware-Software       X                       X             

9 Hardware-Data                   X                         

7 Segment-Requirement                                             

5 Hardware-Software-Requirement       X           X           X             

5 Requirement-Requirement                       X                     

5 Software-Requirement       X X X           X                     

5 System-Requirement                                             

4 Segment-Segment                                             

4 Subsystem-Hardware                   X                         

4 Subsystem-Requirement       X                                     

4 System-Software                                             

3 Data-Requirement                                             

3 Segment-Hardware-Data                                             

3 Software-Software           X                                 



 

129 

    P
h
a
s
e
 0

: 
C

o
n
c
e
p
t 
S

tu
d
ie

s
 

A
lt
e
rn

a
ti
v
e
 S

y
s
te

m
 R

e
v
ie

w
 (

A
S

R
) 

P
h
a
s
e
 A

: 
C

o
n
c
e
p
t 

D
e
v
e
lo

p
m

e
n
t 

In
te

g
ra

te
d
 B

a
s
e
lin

e
 R

e
v
ie

w
 (

IB
R

) 

S
y
s
te

m
 R

e
q
u
ir
e
m

e
n
ts

 R
e
v
ie

w
 (

S
R

R
) 

S
y
s
te

m
 D

e
s
ig

n
 R

e
v
ie

w
 (

S
D

R
) 

P
h
a
s
e
 B

: 
P

re
lim

in
a
ry

 D
e
s
ig

n
 

P
re

lim
in

a
ry

 D
e
s
ig

n
 R

e
v
ie

w
 (

P
D

R
) 

P
h
a
s
e
 C

: 
C

o
m

p
le

te
 D

e
s
ig

n
 

C
ri
ti
c
a
l 
D

e
s
ig

n
 R

e
v
ie

w
 (

C
D

R
) 

P
h
a
s
e
 D

1
: 

F
a

b
ri
c
a
ti
o

n
 &

 I
n
te

g
ra

ti
o
n

 

P
ro

d
u
c
ti
o

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

P
R

R
) 

T
e

s
t 
R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

T
R

R
) 

S
y
s
te

m
 V

e
ri
fi
c
a
ti
o

n
 R

e
v
ie

w
 (

S
V

R
) 

F
u

n
c
ti
o

n
a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

F
C

A
) 

P
h
y
s
ic

a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

P
C

A
) 

P
h
a
s
e
 D

2
: 

F
ie

ld
in

g
 &

 C
h
e
c
k
o
u
t 

M
is

s
io

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

M
R

R
) 

F
lig

h
t 

R
e
a
d
in

e
s
s
 R

e
v
ie

w
 (

F
R

R
) 

L
a
u
n
c
h
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

L
R

R
) 

P
h
a
s
e
 D

3
: 

O
p
e
ra

ti
o

n
s
 &

 D
is

p
o
s
a
l 

P
o
s
t 

F
lig

h
t 
R

e
v
ie

w
 (

P
F

R
) 

3 System-Hardware-Requirement           X                   X             

2 Hardware-Software-Data       X                       X             

2 Segment-Hardware-Requirement                       X                     

2 Segment-Software       X           X   X                     

2 Segment-Subsystem-Hardware                   X   X                     

1 Data-Data                                             

1 Hardware-Data-Requirement                   X                         

1 Segment-Subsystem                                             

1 Subsystem-Hardware-Requirement                                             

1 Subsystem-Hardware-Software                   X                         

1 Subsystem-Software                       X                     

1 Subsystem-Software-Requirement           X                                 

1 System-Hardware-Data           X                                 

1 System-Hardware-Software           X                   X             

1 System-Segment                   X                         

1 System-Segment-Hardware                                             

1 System-Segment-Requirement                                             

1 System-Software-Data                                             

1 System-Subsystem-Requirement                   X                         

228 TOTAL   0   8 1 7   0   11   9 0 0 0 6   0 0 0   0 

D: People-Process 

3 Developer-Evaluate       X   X           X     X               

2 Developer-Define           X           X                     

2 Developer-Design           X           X                     

2 Developer-Implement       X               X     X               
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2 Developer-Manage       X           X   X                     

1 Acquirer-Define                                             

1 Acquirer-Manage                   X                         

1 Operator-Define                                             

1 Stakeholder (Independent)-Define                                             

15 TOTAL   0   3 0 3   0   2   5 0 0 2 0   0 0 0   0 

E: Process-Product 

40 Deploy-Hardware                                             

38 Evaluate-Hardware                                             

24 Design-Hardware                                             

20 Evaluate-Requirement                                             

10 Design-Requirement                                             

10 Implement-Hardware                                             

10 Manage-Requirement                                             

9 Define-Requirement                                             

9 Deploy-Requirement                                             

6 Deploy-Segment                                             

6 Implement-Requirement                                             

6 Manage-Hardware                                             

5 Evaluate-Software                                             

5 Evaluate-System                                             

4 Deploy-Data                                             

4 Design-Software                                             

4 Evaluate-Data                                             

4 Evaluate-Segment                                             
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4 Implement-Software                                             

3 Define-Hardware           X                                 

3 Deploy-Software                                             

3 Design-Evaluate-Hardware                                             

3 Design-Segment                                             

3 Design-System                                             

3 Evaluate-Deploy-Hardware                                             

3 Evaluate-Hardware-Software                                             

2 Define-Data                                             

2 Deploy-Subsystem                                             

2 Evaluate-Deploy-Requirement                                             

2 Evaluate-Hardware-Data                                             

2 Evaluate-Software-Requirement                                             

2 Evaluate-Subsystem                                             

2 Manage-Data                                             

1 Define-Data-Requirement                                             

1 Define-Design-Implement-Evaluate-Rqmt                                             

1 Define-Design-Requirement                                             

1 Define-Design-Software                                             

1 Define-Evaluate-Hardware                                             

1 Define-Hardware-Requirement                                             

1 Define-Implement-Data                                             

1 Define-Implement-Evaluate-Hardware                                             

1 Define-Implement-Software                                             

1 Define-Software                                             
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1 Deploy-Evaluate-Hardware-Requirement                                             

1 Deploy-System-Segment-Requirement                                             

1 Design-Data                                             

1 Design-Deploy-Segment                                             

1 Design-Deploy-Software                                             

1 Design-Evaluate-System-Hardware-Rqmt                                             

1 Design-Hardware-Data                                             

1 Design-Implement-Deploy-Mng-Hardware                                             

1 Design-Implement-Hardware                                             

1 Design-Segment-Requirement                                             

1 Design-Subsystem                                             

1 Evaluate-Deploy-Data-Requirement                                             

1 Evaluate-Deploy-Hardware-Requirement                                             

1 Evaluate-Hardware-Requirement                                             

1 Evaluate-Manage-Requirement                                             

1 Implement-Evaluate-Hardware-Requirement                                             

1 Implement-Evaluate-Software                                             

1 Implement-Evaluate-Software-Requirement                                             

1 Implement-Hardware-Requirement                                             

1 Implement-Segment                                             

1 Implement-Software-Requirement                                             

1 Implement-Subsystem                                             

1 Implement-System                                             

1 Manage-Data-Requirement                                             

1 Manage-Hardware-Software                                             
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1 Manage-Software                                             

1 Manage-Subsystem                                             

1 Manage-System                                             

291 TOTAL   0   0 0 1   0   0   0 0 0 0 0   0 0 0   0 

F: People-Product 

2 Supplier-Requirements                                             

1 Acquirer-Data                                              

1 Developer-Data                                              

1 Developer-Requirements                             X X             

1 Operator-System         X                   X X             

1 Stakeholder-Hardware         X     X                             

7 TOTAL   0   0 2 0   1   0   0 0 0 2 2   0 0 0   0 

G: People-Process-Product 

7 Developer-Evaluate-Hardware                                             

7 Developer-Implement-Hardware                                             

4 Developer-Design-Hardware               X                             

4 Developer-Manage-Requirement                                             

3 Developer-Define-Requirement       X       X       X                     

3 Developer-Deploy-Hardware                       X                     

3 Developer-Design-Requirement         X                                   

3 Developer-Evaluate-Requirement                                             

3 Operator-Deploy-Hardware                                             

2 Developer-Deploy-Requirement                                             

2 Developer-Design-Software               X                             
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2 Developer-Evaluate-Subsystem       X                                     

2 Developer-Manage-Hardware                                             

2 Operator-Deploy-Requirement                                             

2 Operator-Evaluate-Requirement                                             

2 Supplier-Implement-Hardware                                             

1 Acquirer-Evaluate-Requirement                                             

1 Acquirer-Evaluate-Subsystem       X                                     

1 Acquirer-Implement-Software       X       X       X                     

1 Acquirer-Manage-Requirement       X       X       X     X               

1 Developer-Define-Data                                             

1 Developer-Define-Evaluate-Requirement       X               X                     

1 Developer-Define-Manage-Requirement       X               X                     

1 Developer-Deploy-Segment                       X                     

1 Developer-Deploy-Software       X       X                             

1 Developer-Design-Data       X X                                   

1 Developer-Design-Hardware-Software       X X     X       X                     

1 Developer-Evaluate-Data         X                                   

1 Developer-Evaluate-Hardware-Requirement                                             

1 Developer-Evaluate-Hardware-Software                                             

1 Developer-Evaluate-Software                                             

1 Developer-Evaluate-System       X                                     

1 Developer-Evaluate-System-Hardware                                             

1 Developer-Implement-Evaluate-Mng-Software                                             

1 Developer-Implement-Requirement                                             

1 Developer-Implement-Software                                             



 

135 

    P
h
a
s
e
 0

: 
C

o
n
c
e
p
t 
S

tu
d
ie

s
 

A
lt
e
rn

a
ti
v
e
 S

y
s
te

m
 R

e
v
ie

w
 (

A
S

R
) 

P
h
a
s
e
 A

: 
C

o
n
c
e
p
t 

D
e
v
e
lo

p
m

e
n
t 

In
te

g
ra

te
d
 B

a
s
e
lin

e
 R

e
v
ie

w
 (

IB
R

) 

S
y
s
te

m
 R

e
q
u
ir
e
m

e
n
ts

 R
e
v
ie

w
 (

S
R

R
) 

S
y
s
te

m
 D

e
s
ig

n
 R

e
v
ie

w
 (

S
D

R
) 

P
h
a
s
e
 B

: 
P

re
lim

in
a
ry

 D
e
s
ig

n
 

P
re

lim
in

a
ry

 D
e
s
ig

n
 R

e
v
ie

w
 (

P
D

R
) 

P
h
a
s
e
 C

: 
C

o
m

p
le

te
 D

e
s
ig

n
 

C
ri
ti
c
a
l 
D

e
s
ig

n
 R

e
v
ie

w
 (

C
D

R
) 

P
h
a
s
e
 D

1
: 

F
a

b
ri
c
a
ti
o

n
 &

 I
n
te

g
ra

ti
o
n

 

P
ro

d
u
c
ti
o

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

P
R

R
) 

T
e

s
t 
R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

T
R

R
) 

S
y
s
te

m
 V

e
ri
fi
c
a
ti
o

n
 R

e
v
ie

w
 (

S
V

R
) 

F
u

n
c
ti
o

n
a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

F
C

A
) 

P
h
y
s
ic

a
l 
C

o
n
fi
g

u
ra

ti
o

n
 A

u
d
it
 (

P
C

A
) 

P
h
a
s
e
 D

2
: 

F
ie

ld
in

g
 &

 C
h
e
c
k
o
u
t 

M
is

s
io

n
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

M
R

R
) 

F
lig

h
t 

R
e
a
d
in

e
s
s
 R

e
v
ie

w
 (

F
R

R
) 

L
a
u
n
c
h
 R

e
a
d
in

e
s
s
 R

e
v
ie

w
 (

L
R

R
) 

P
h
a
s
e
 D

3
: 

O
p
e
ra

ti
o

n
s
 &

 D
is

p
o
s
a
l 

P
o
s
t 

F
lig

h
t 
R

e
v
ie

w
 (

P
F

R
) 

1 Developer-Manage-Data                                             

1 Developer-Operator-Deploy-Requirement                                             

1 Operator-Define-Requirement                                             

1 Operator-Evaluate-Data                                             

1 Operator-Manage-Hardware                                             

1 Operator-Manage-Requirement                                             

1 Stakeholder-Define-Segment                                             

1 Stakeholder-Deploy-Hardware                                             

1 Stakeholder-Evaluate-Requirement                                             

1 Stakeholder-Manage-Requirement                                             

1 Supplier-Define-Hardware                                             

1 Supplier-Evaluate-Hardware                                             

1 Supplier-Evaluate-Requirement                                             

1 User-Deploy-Data                                             

85 TOTAL   0   11 4 0   7   0   8 0 0 1 0   0 0 0   0 
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Appendix D: Space System Acquisition TR&A Criteria (23:156-166) 

Manufacturing Management/Production Capability Review (MM/PCR) 
An MM/PCR is conducted during source selection by the government program office at the prospective contractors‘ facilities to 
evaluate competing contractors‘ capability to meet all immediate and future production requirements of proposed systems. 

 

Integrated Baseline Review (IBR) 

The IBR provides a mutual (government, contractor program manager) understanding of the inherent technical and programmatic 

risks in the contractor‘s plans, the underlying management control systems, and the required resources to reduce risks to an acceptable 

level. An IBR also examines consistency among technical, schedule, cost, resource and management risks. IBRs are generally 
conducted within three months after every program key decision point (KDP) and called for by the government program manager as 

part of his/her risk management approach. Those risks identified during the IBR should be reviewed and mitigation plans incorporated 

into risk management planning. 
 

System Requirements Review (SRR) 

The SRR determines if the contractor‘s efforts to understand and translate mission requirements into system requirements and 
operations concept were adequate, and establishes a formal system requirements baseline down to the element level. This includes 

summarizing significant potential and known program risks and potential risk mitigation strategies, identifying interfaces with and 

impact to other systems, describing development and operational test approaches, and addressing the producibility of the proposed 
design concept. The SRR is generally conducted once per program after a significant number of systems functional requirements have 

been defined and allocated to appropriate CIs and a significant amount of requirements analysis has been completed. This activity is 

conducted by the contractor and is generally completed within MAG Phase A (concept exploration) or, at the latest, soon after 
development contract award (MAG Phase C). 

 

System Design Review (SDR) 

The SDR evaluates the contractor‘s approach for optimization, correlation, completeness, and risk mitigation associated with the 

allocated technical requirements of the identified CIs and the established system design specification baseline. The SDR also includes 
examinations of the system functional requirements, external interface control requirements, and preliminary system verification plan. 

A review of the systems engineering process that allocated the technical requirements and the engineering plan for the design and 

development phase is also conducted. Basic manufacturing considerations and the production-engineering plan will also be reviewed 
as consideration of design producibility. Careful examination is conducted of all medium- and high-priority risks from assembly level 

to segment level, and their reflection to the system level along with companion mitigation strategies. 

 

Preliminary Design Review (PDR) 

The PDR evaluates the contractor‘s technical adequacy, progress, and risk resolution for the selected design-to approach for all CIs, 

and establishes a CI design baseline down to the assembly level. The PDR demonstrates design compatibility with the performance 
and engineering specialty requirements of the hardware development specifications. Included is an evaluation of technical risks 

associated with the manufacturing process/methods and the establishment of the compatibility of the physical and functional interfaces 

among and between CIs (e.g., units, subsystems, or system), facilities, computer software configuration items (CSCIs), and personnel. 
The PDR processes allow for an engineering assessment of the technical adequacy of top-level design, testing approach, and 

CONOPS. PDRs are normally conducted once per program for each CI at the assembly level, subsystem, element, and segment 

building to the system level as appropriate. 

 

Critical Design Review (CDR) 

The CDR evaluates the contractor‘s detailed system design and the detailed build-to design for each CI (e.g., CSCIs, units, 
subsystems, or system) to determine if each design meets the allocated functional, performance, and engineering specialty 

requirements. The CDR also is used to evaluate whether the design can be produced and verified, has interface compatibility between 

CI/CSCIs, facilities, and personnel, and that all risks have been identified, rated, and satisfactory mitigation plans established. CDRs 
are normally held once per program during 

MAG Phase C for each CI (assembly level), subsystem, element, and segment building to a system level, as appropriate. 

 

Test Readiness Review (TRR) 
The TRR examines the contractor‘s progress and status for each CI/CSCI to determine whether hardware and software procedures are 

complete and the contractor is prepared to start testing. The results of any informal testing and changes to the CONOPS are also 
reviewed. 

 

Formal Qualification Reviews (FQR) 

An FQR evaluates the test, inspection, or analytical results by which a group of hardware configuration items (HWCIs)/CSCIs 

comprising a system is verified to have met specific performance requirements (specifications or the equivalent). This review does not 

apply to hardware or software verified at functional configuration audit (FCA) for individual CIs. 

 

Production Readiness Review (PRR) 

The PRR evaluates the contractor and the contractor‘s design readiness to begin manufacturing.23 The PRR is conducted by the 
government program office and supported by the contractor. The PRR is held incrementally (generally three sessions–two preliminary 

and one final) during full-scale development. This review is intended to determine if the issues, risks, and corrective actions for 

manufacturing have been satisfactorily resolved prior to a production go-ahead decision. As the design matures, the review become 
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more focused and refined dealing with production planning, facilities, allocation, identification and fabrication of tools/test equipment, 

long lead acquisitions, and the incorporation of producibility-oriented changes. 
 

System Verification Review (SVR) 

The SVR incrementally demonstrates that the total system (personnel, products, and processes) is verified to satisfy requirements in 
the functional and allocated configuration documentation and to confirm readiness for production, support, training, operations, 

subsequent verifications, additional development, and disposal. The SVR determines if the system produced is capable of meeting the 

technical performance requirements established in the specifications and test plans. 
 

Hardware Reviews 

Acceptance reviews can be informal or formal reviews chaired and presented by the contractor. Formal reviews are sometimes called 
hardware acceptance reviews or buy-off reviews with the objective of verifying that all hardware, parts, materials, and components 

have been manufactured and tested in accordance with current design documentation, test procedures, and related documentation prior 

to government acceptance via a DD-250 and/or delivery to the next highest level assembly or to the launch site. The manufacturing, 
inspection, and acceptance verifications plus hardware pedigree status are the principal inputs to this review. The team reviews all 

acceptance test data, and any perceived shortcomings are investigated. The responsible test engineers are available to explain how the 

test was conducted and anomalies were resolved. Independent pedigree reviews by a government team often supplement contractor-
led acceptance reviews and focus on individual critical components and subsystems to establish that the as-built hardware agrees with 

its design and manufacturing requirements and is not ―out-of-family‖ with predecessors. The pedigree includes a review of 

manufacturing and quality assurance documentation to verify documented procedures and processes were followed, that any out-of-
sequence work maintained the product‘s integrity, engineering changes were proper, deviations and ―use as is‖ material review board 

decisions were adequately justified, and whether new processes, materials, or design changes were made that did not violate the 

product‘s qualification status. The pedigree also includes an assessment of acceptance testing to ensure procedures were followed, 
deviations were justified and the root cause of noted test discrepancies was identified with the appropriate corrective action taken. 

 

Functional Configuration Audit (FCA) 

The FCA is a formal audit conducted by the government program office and supported by the contractor to demonstrate that hardware 

and/or software CIs have been achieved. This audit examines the CONOPS, test plans, analysis and inspection reports, as-used 
qualification test procedures, test data, test reports, drawings, and other supporting documentation. An FCA is conducted on either the 

first production unit or a pre-production representative of the configuration to be released as an operational production unit. The final 

FCA occurs at the completion of CI qualification testing. 

 

Physical Configuration Audit (PCA) 

The PCA is a formal audit conducted by the government program office and supported by the contractor. The PCA technically 
examines subject CIs to verify that each CI ―as-built‖ conforms to the technical documentation defining the CI in order to establish the 

product baseline. A complete PCA is done on the first production unit and is not repeated unless significant engineering changes and 

resulting modifications to the CI have occurred. Customer formal acceptance of product specification and successful completion of the 
PCA results in the establishment of the product baseline. The PCA includes a detailed examination of engineering drawings, 

specifications, technical data, acceptance test procedures and test data, design documentation, and all operational support 

documentation (e.g., user manuals, diagnostic manuals, and firmware support manuals). 
 

Preliminary Design Audit (PDA) 

PDAs are working-level meetings between the government program office team and the contractor prior to the program‘s formal PDR 
milestone. PDAs address design thoroughness (ability to meet all functional, performance, and interface requirements from the system 

to the CI level) in specific functional areas, units, or subsystems, and are milestones on the program‘s detailed schedule. For complex 

NSS systems, successful PDAs represent entrance gates to the formal PDR. A series of detailed technical meetings between the 
contractor, subcontractors, suppliers, and government program office constitutes a single PDA. PDAs are held for each CI (assembly 

level), subsystem, element, and segment building to the system level, as appropriate. The PDA process allows for very detailed design 

investigations to ensure requirements can be satisfied, identifies faults/failure modes and plausible mitigation approaches, examines 
relevant risk mitigation plans and progress, and identifies issues that need to be resolved before the formal PDR. PDAs are normally 

held once per program prior to the formal PDR in MAG Phase C. 

 

Critical Design Audit (CDA) 

CDAs are detailed technical working-level meetings between the government program office, the contractor, the subcontractors, and 

the suppliers prior to the program‘s formal CDR milestone. For complex NSS systems, CDAs are held for each CI (assembly level), 
subsystem, element, and segment build to the system level, as appropriate. CDAs address design thoroughness (the ability to meet all 

functional, performance, and interface requirements from the system to the CI level), risk reduction, and verification and test planning 

for each level of assembly under examination. During detailed CDA engineering interactions, confidence is gained that the design 
trades are completed, the final design is complete and producible, and the design has been documented for manufacturing or 

procurement to begin. Successful completion of each CDA will ensure that all outstanding problems, issues, and risks have 

appropriate work-off plans. Successful completion of each CDA is an entrance criterion for the program‘s formal CDR milestone. 
CDAs are normally held once per program prior to the formal CDR during MAG Phase C. 

 

Readiness Reviews 

Readiness reviews provide a formal mechanism that supports the decision-making process by forcing a careful examination of all 

elements of the system at key maturity milestones relative to final integration, testing, and operator proficiency, including outstanding 

problems or liens, in preparation for launch. Key decision points (KDPs) include the decision to ship the launch and/or space vehicle 
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to the launch site from the factory; the decision to proceed with vehicle erection on the launch pad; and the decision to proceed with 

the launch after successfully completing launch integration and processing, successfully demonstrating end-to-end mission 
connectivity, and successfully demonstrating personnel proficiency through rehearsals. Post-launch reviews are also included to assess 

flight performance and gather lessons learned. 

 

Independent Readiness Review Team (IRRT)/Mission Assurance Team (MAT) 

IRRT/MAT reviews taken together are independent, technical examinations of space vehicle and/or launch vehicle risks beginning 

approximately one to two years prior to launch. The IRRT is co-led by Space and Missile Systems Center (SMC) and Aerospace, 
focusing on the integrated launch vehicle. The MAT is co-led by the National Reconnaissance Office (NRO) and Aerospace and 

focuses solely on the launch vehicle. Both reviews are conducted by a core team, augmented as needed to provide a complete set of 

discipline and subsystem experts from Aerospace, system engineering and technical assistance (SETA), government, and contractor 
personnel. The reviews provide technical assessments of the space vehicle or launch vehicle, identify increased risks beyond the 

established mission baseline to safety or mission success, recommend risk mitigation or confidence-enhancing steps, and evaluate all 

open issues and the acceptability of all indicated closure paths. The reviews are done incrementally with the final review (IRRT or 
MAT) occurring before launch. As such, the extent of each review is negotiable depending on the hardware/software design and 

development stage of the program, hardware/software performance history, and resources available for the review, changes since the 

last review and the scope of the last review. The timing of final MAT/IRRT review should provide sufficient time for a complete 
review and for any corrective actions to take place and critical recommendations implemented. 

 

Mission Readiness Review (MRR) 

The MRR is a formal review organized by the spacecraft single manager (SM) to evaluate the readiness of the spacecraft before final 

launch integration activities are initiated. The mission director, launch program SM, and appropriate launch base detachment 

commander may choose to attend. Program and support organization personnel conduct the MRR, which is supported by the 
appropriate contractors. Findings and deficiencies should be corrected or disposed of before the flight readiness review (FRR) one to 

two days before launch. The MRR addresses all system components of mission readiness, including status of flight hardware 
(spacecraft, launch vehicle, upper stage), launch and support facilities, range and orbital operations, ground station operations, and the 

readiness and training of all personnel, including customer elements processing mission data. Successful completion of the MRR 

results in a decision to ship the launch vehicle or space vehicle to the launch base to begin launch processing (i.e., ―consent to ship‖). 
 

Aerospace President’s Readiness Review 

In support of the SMC commander‘s FRR (see the following paragraph), the president of The Aerospace Corporation conducts his 
own objective review of the space and launch vehicles‘ readiness to support the designated mission. Both the Aerospace program 

offices and the IRRT present their findings during this review and support more detailed technical discussions on specific issues, as 

required by, prior to, during, or subsequent to the president‘s formal review. Aerospace corporate vice presidents of the appropriate 
Space Launch Operations, Space Program Operations or National Systems Group, or Engineering Technology Group support the 

president‘s review. In accordance with SMCI 63-1201, the president presents his findings to the SMC commander during the FRR and 

participates in the readiness poll. 

 

Pre-ship Review (PSR) 

The program conducts hardware PSR to assure that flight hardware and components, software, ground support equipment, and 
procedural documentation are ready to ship to the deployment site. Operations personnel participate in this review. This type of review 

is meant to identify any open issues affecting deployment and subsequent operations, verify that planning is in place to close-out these 

issues in a timely manner, and verify supportability of the program‘s ensuing activities. Operations personnel ensure sufficient 
coordination between the system contractor and Range/launch site (and/or any other receiving site), to assure that the latter is ready to 

receive program hardware, receiving support has been appropriately scheduled, and receiving facilities are prepared to support 

hardware arrival and post-shipping inspection activities. 

 

Flight Readiness Review (FRR) 
The FRR is a formal review organized and coordinated with applicable government program offices and presented to the SMC 
commander (or designated representative) by the mission director and supported by the launch base and appropriate contractors. The 

FRR evaluates the space flight worthiness of the integrated flight hardware (space vehicle, upper stage and launch vehicle) 

approximately one to three weeks before launch. It also addresses the readiness of launch and support facilities (ground systems), 
range and orbital operations, and the readiness and training of the operating personnel. The review includes a safety verification of the 

integrated system. 

The objective is to ensure the prime contractors, The Aerospace Corporation, the spacecraft program office, launch programs, and the 
SMC commander agree that the launch vehicle is flight worthy and ready to begin final launch operations. Other inputs to the FRR 

include the IRRT and MAT reviews, the contractor and Aerospace presidents‘ reviews, and detailed briefings by both the spacecraft 

and launch program teams. At completion of the FRR, the SMC commander will assess and may certify space flight worthiness of the 
integrated system for USAF space missions. For USAF-managed space and launch vehicles in support of non-USAF customers, the 

SMC commander will be responsible for approving the SM‘s certification. For selected critical missions, the SMC commander will 

follow-up with an executive mission readiness report (EMRR) to Air Force senior leadership. The FRR is conducted after the launch 
vehicle and spacecraft are integrated, approximately one to two weeks before launch. 

 

Launch Readiness Review (LRR) 

A LRR is an operations readiness review organized by the Launch Decision Authority (i.e., launch base wing commander, or the 

Launch Processing Agency when a non-Air Force Space Command launch site is used) and supported by the appropriate contractors. 

It is conducted following the integrated launch and space vehicle systems test one or two days before launch. The LRR process 
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provides a summary prelaunch assessment of the readiness status of the total system (space and launch vehicle), the launch facility, 

range safety and instrumentation, the Air Force Satellite Control Network, the operational mission control station, operations 
personnel, and other launch or on-orbit support. Launch Decision Authority also verifies the closure of issues and items and 

determines the readiness status of safety, training, weather, and recovery teams. 

 

Post-flight Review (PFR) 

A PFR is conducted for all missions requiring a MRR and the results are presented to the single manager who chaired the MRR. It is 

intended as a top-level summary predicated on post-launch, in-depth assessments conducted by the space vehicle program manager, 
launch vehicle program manager, and appropriate payload mission managers. The PFR typically covers the time from the MRR 

through early on-orbit operations. The PFR addresses pre-launch ground operations, launch operations, mission and space vehicle 

operations, the launch vehicle, the space vehicle, critical ground systems and interfaces, and the payload user‘s ground interface to 
receive and process mission data. The PFR captures all Lessons Learned from the mission and provides both feedback and schedule 

imperative to the government program office to implement Lessons Learned before the program office‘s next mission. PRRs are held 

approximately 60 days after launch and early on-orbit testing is completed. 
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